Rapid Quantitative Detection of Dye Concentration in Pt/TiO2 Photocatalytic System Based on RGB Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation and Characterization of Pt/TiO2 Photocatalyst
2.2.1. Preparation of Pt/TiO2 Photocatalyst
2.2.2. Characterization of Pt/TiO2 Photocatalyst
2.3. Photocatalytic Performance and Mechanistic Investigation of Pt/TiO2 Photocatalyst
2.3.1. Photocatalytic Performance Testing
2.3.2. Mechanistic Investigation Testing
2.4. RGB-Based PLS Model for Quantitative Detection of Methylene Blue Concentration
3. Results and Discussion
3.1. SEM Analysis
3.2. Structural and Optical Characterization (XRD, UV–Vis DRS, and XPS)
3.3. Photocatalytic Performance and Mechanistic Investigation of Pt/TiO2
3.4. Rapid Detection of Methylene Blue Concentration Using RGB-Based Sensing Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TiO2 | Titanium dioxide |
HPLC | High-performance liquid chromatography |
PLS | Partial least squares |
References
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent advances of photocatalytic application in water treatment: A review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Esrafili, A.; Salimi, M.; Jafari, A.J.; Sobhi, H.R.; Gholami, M.; Kalantary, R.R. Pt-based TiO2 photocatalytic systems: A systematic review. J. Mol. Liq. 2022, 352, 118685. [Google Scholar] [CrossRef]
- Serra-Pérez, E.; Dražić, G.; Takashima, M.; Ohtani, B.; Kovačič, S.; Žerjav, G.; Tušar, N.N. Influence of the surface structure of the TiO2 support on the properties of the Au/TiO2 photocatalyst for water treatment under visible light. Catal. Today 2024, 437, 114764. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Kutiang, F.D.A.; Lim, Y.C.; Goh, P.S. Recent progress of Ag/TiO2 photocatalyst for wastewater treatment: Doping, co-doping, and green materials functionalization. Appl. Mater. Today 2022, 27, 101500. [Google Scholar] [CrossRef]
- Li, F.B.; Li, X.Z. The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 2002, 48, 1103–1111. [Google Scholar] [CrossRef]
- Botelho, B.G.; Dantas, K.C.F.; Sena, M.M. Determination of allura red dye in hard candies by using digital images obtained with a mobile phone and N-PLS. Chemom. Intell. Lab. Syst. 2017, 167, 44–49. [Google Scholar] [CrossRef]
- Fay, C.D.; Wu, L. Critical importance of RGB color space specificity for colorimetric bio/chemical sensing: A comprehensive study. Talanta 2024, 266, 124957. [Google Scholar] [CrossRef]
- Singh, G.; Singh, H.; Kaur, N.; Singh, N. Azodye-based colorimetric sensor array for identification of biogenic amines: Food forensics by portable RGB-based signal readout. Sens. Actuators B Chem. 2023, 387, 133794. [Google Scholar] [CrossRef]
- Li, C.-H.; Hsieh, Y.-H.; Chiu, W.-T.; Liu, C.-C.; Kao, C.-L. Study on preparation and photocatalytic performance of Ag/TiO2 and Pt/TiO2 photocatalysts. Sep. Purif. Technol. 2007, 58, 148–151. [Google Scholar] [CrossRef]
- He, Z.; Que, W.; Chen, J.; He, Y.; Wang, G. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization. J. Phys. Chem. Solids 2013, 74, 924–928. [Google Scholar] [CrossRef]
- Kim, K.; Winograd, N.; Davis, R. Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies. J. Am. Chem. Soc. 1971, 93, 6296–6297. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chao, J.-H.; Liu, C.-H.; Chang, J.-C.; Wang, F.-C. Effect of calcination temperature on the structure of a Pt/TiO2 nanofiber and its photocatalytic activity in generating H2. Langmuir 2008, 24, 9907–9915. [Google Scholar] [CrossRef]
- Das, A.; Adak, M.K.; Mahata, N.; Biswas, B. Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. J. Mol. Liq. 2021, 338, 116479. [Google Scholar] [CrossRef]
- Hufschmidt, D.; Bahnemann, D.; Testa, J.J.; Emilio, C.A.; Litter, M.I. Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. J. Photochem. Photobiol. A Chem. 2002, 148, 223–231. [Google Scholar] [CrossRef]
- Qin, L.; Wang, G.; Tan, Y. Plasmonic Pt nanoparticles—TiO2 hierarchical nano-architecture as a visible light photocatalyst for water splitting. Sci. Rep. 2018, 8, 16198. [Google Scholar] [CrossRef]
- Lv, J.; Gao, H.; Wang, H.; Lu, X.; Xu, G.; Wang, D.; Chen, Z.; Zhang, X.; Zheng, Z.; Wu, Y. Controlled deposition and enhanced visible light photocatalytic performance of Pt-modified TiO2 nanotube arrays. Appl. Surf. Sci. 2015, 351, 225–231. [Google Scholar] [CrossRef]
- Moslah, C.; Kandyla, M.; Mousdis, G.A.; Petropoulou, G.; Ksibi, M. Photocatalytic properties of titanium dioxide thin films doped with noble metals (Ag, Au, Pd, and Pt). Phys. Status Solidi 2018, 215, 1800023. [Google Scholar] [CrossRef]
- Du, Y.; Ma, D.; Li, J.; Huang, Q.; He, Q.; Ji, J.; Ji, H.; Ma, W.; Zhao, J. Visible light-sensitized CO2 methanation along a relaxed heat available route. Chemistry 2024, 30, e202402102. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Wang, Z.; Cui, J.; Liu, S.; Yang, L.; Fu, Y.; Zhu, B.; Guo, C. Rapid Quantitative Detection of Dye Concentration in Pt/TiO2 Photocatalytic System Based on RGB Sensing. Sensors 2025, 25, 3195. https://doi.org/10.3390/s25103195
Han C, Wang Z, Cui J, Liu S, Yang L, Fu Y, Zhu B, Guo C. Rapid Quantitative Detection of Dye Concentration in Pt/TiO2 Photocatalytic System Based on RGB Sensing. Sensors. 2025; 25(10):3195. https://doi.org/10.3390/s25103195
Chicago/Turabian StyleHan, Cuiyan, Ziao Wang, Jiahong Cui, Shuqi Liu, Liu Yang, Yang Fu, Baolin Zhu, and Cheng Guo. 2025. "Rapid Quantitative Detection of Dye Concentration in Pt/TiO2 Photocatalytic System Based on RGB Sensing" Sensors 25, no. 10: 3195. https://doi.org/10.3390/s25103195
APA StyleHan, C., Wang, Z., Cui, J., Liu, S., Yang, L., Fu, Y., Zhu, B., & Guo, C. (2025). Rapid Quantitative Detection of Dye Concentration in Pt/TiO2 Photocatalytic System Based on RGB Sensing. Sensors, 25(10), 3195. https://doi.org/10.3390/s25103195