Non-Uniform Antenna Array for Enhanced Medical Microwave Imaging
Abstract
:1. Introduction
2. Problem Formulation
2.1. Principle of Acquired Imaging Information in MWI
2.2. Impact of Antenna Positioning on MIC
3. Optimization of Antenna Positions for the Whole System
- Initialization: begin with an initial set of uniformly distributed antenna positions around the imaging domain.
- Simulation: Each antenna configuration is simulated using CST. All S-parameters, including both reflection and transmission coefficients, are extracted and transferred to a MATLAB-2024 code for further analysis.
- Evaluation: In MATLAB, the reflection coefficients (S11) are checked to ensure each antenna maintains the required matching bandwidth (e.g., <−10 dB). The transmission coefficients are then evaluated using a custom-defined cost function (Equation (7)), which quantifies the spatial information diversity captured by the configuration based on the minimum MIC.
- Optimization: Based on the output of the cost function, the PSO algorithm updates the antenna positions to suggest an improved configuration. This updated layout is fed back into CST for re-simulation.
- Iteration: Steps 2 to 4 are repeated until the convergence criteria are met, indicating that a near-optimal or satisfactory antenna arrangement has been achieved.
4. Performance Evaluation and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haykin, S.; Litva, J.; Shepherd, T.J. Radar Array Processing, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Rodriguez-Duarte, D.O.; Vasquez, J.A.T.; Scapaticci, R.; Crocco, L.; Vipiana, F. Assessing a Microwave Imaging System for Brain Stroke Monitoring via High Fidelity Numerical Modelling. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 238–245. [Google Scholar] [CrossRef]
- Friedrich, C.; Bourguignon, S.; Idier, J.; Goussard, Y. Three-Dimensional Microwave Imaging: Fast and Accurate Computations with Block Resolution Algorithms. Sensors 2020, 20, 6282. [Google Scholar] [CrossRef]
- Fedeli, A.; Schenone, V.; Estatico, C.; Randazzo, A. Stroke Detection and Monitoring by Means of a Multifrequency Microwave Inversion Approach. Electronics 2025, 14, 543. [Google Scholar] [CrossRef]
- Sultan, K.; Abbosh, A. Advancing Wearable Electromagnetic Knee Imaging: A Comprehensive Review of Systems, Frameworks, Key Challenges, and Future Directions. IEEE J. Electromagn. RF Microw. Med. Biol. 2023, 7, 468–490. [Google Scholar] [CrossRef]
- Sultan, K. Design and Implementation of Electromagnetic Knee Imaging Systems. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2022. [Google Scholar]
- Blanco-Angulo, C.; Martínez-Lozano, A.; Gutiérrez-Mazón, R.; Juan, C.G.; García-Martínez, H.; Arias-Rodríguez, J.; Sabater-Navarro, J.M.; Ávila-Navarro, E. Non-Invasive Microwave-Based Imaging System for Early Detection of Breast Tumours. Biosensors 2022, 12, 752. [Google Scholar] [CrossRef]
- Abbosh, Y.M.; Sultan, K.; Guo, L.; Abbosh, A. Synthetic Microwave Focusing Techniques for Medical Imaging: Fundamentals, Limitations, and Challenges. Biosensors 2024, 14, 498. [Google Scholar] [CrossRef]
- Chen, H.; Luk, K.M. An Antenna Array Based on Radar Operation with High Detection Capability and Implementability for Three-Dimensional Head Imaging. IEEE Trans. Antennas Propag. 2024, 72, 4729–4743. [Google Scholar] [CrossRef]
- Sultan, K.S.; Mohammed, B.; Manoufali, M.; Mahmoud, A.; Mills, P.C.; Abbosh, A. Feasibility of Electromagnetic Knee Imaging Verified on Ex-Vivo Pig Knees. IEEE Trans. on Biomed. Eng. 2022, 69, 1651–1662. [Google Scholar] [CrossRef]
- Wang, X.; Xi, Z.; Ye, K.; Gong, Z.; Chen, Y.; Wang, X. Improvement of Phased Antenna Array Applied in Focused Microwave Breast Hyperthermia. Sensors 2024, 24, 2682. [Google Scholar] [CrossRef]
- Ahdi Rezaeieh, S.A.; Darvazehban, A.; Janani, A.S.; Abbosh, A.M. Electromagnetic Torso Scanning: A Review of Devices, Algorithms, and Systems. Biosensors 2021, 11, 135. [Google Scholar] [CrossRef]
- Darvazehban, A.; Rezaeieh, S.A.; Abbosh, A.M. Programmable Metasurface Antenna for Electromagnetic Torso Scanning. IEEE Access 2020, 8, 166801–166812. [Google Scholar] [CrossRef]
- Sultan, K.S.; Abbosh, A.M. Wearable Dual Polarized Electromagnetic Knee Imaging System. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 296–311. [Google Scholar] [CrossRef]
- Mousavi, S.M.H.; Sultan, K.; Guo, L.; Janani, A.S.; Bialkowski, K.; Abbosh, A.M. Dual-Sense Circularly Polarized Substrate Integrated Waveguide Antenna for Deep Torso Imaging. IEEE Trans. Antennas Propag. 2025, 73, 188–200. [Google Scholar] [CrossRef]
- Darvazehban, A.; Rezaeieh, S.A.; Zamani, A.; Abbosh, A.M. Pattern reconfigurable metasurface antenna for electromagnetic torso imaging. IEEE Trans. Antennas Propag. 2019, 67, 5453–5462. [Google Scholar] [CrossRef]
- Origlia, C.; Rodriguez-Duarte, D.O.; Tobon Vasquez, J.A.; Bolomey, J.-C.; Vipiana, F. Review of Microwave Near-Field Sensing and Imaging Devices in Medical Applications. Sensors 2024, 24, 4515. [Google Scholar] [CrossRef]
- Awan, D.; Bashir, S.; Khan, S.; Al-Bawri, S.S.; Dalarsson, M. UWB Antenna with Enhanced Directivity for Applications in Microwave Medical Imaging. Sensors 2024, 24, 1315. [Google Scholar] [CrossRef]
- Bucci, O.M.; Crocco, L.; Scapaticci, R.; Bellizzi, G. On the Design of Phased Arrays for Medical Applications. Proc. IEEE 2016, 104, 633–648. [Google Scholar] [CrossRef]
- Guo, L.; Abbosh, A.M. Microwave Stepped Frequency Head Imaging Using Compressive Sensing with Limited Number of Frequency Steps. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1133–1136. [Google Scholar] [CrossRef]
- Zamani, A.; Abbosh, A.M.; Crozier, S. Multistatic Biomedical Microwave Imaging Using Spatial Interpolator for Extended Virtual Antenna Array. IEEE Trans. Antennas Propag. 2017, 65, 1121–1130. [Google Scholar] [CrossRef]
- Pato, M.; Eleutério, R.; Conceição, R.C.; Godinho, D.M. Evaluating the Performance of Algorithms in Axillary Microwave Imaging towards Improved Breast Cancer Staging. Sensors 2023, 23, 1496. [Google Scholar] [CrossRef]
- Fear, E.C.; Li, X.; Hagness, S.C.; Stuchly, M.A. Confocal microwave imaging for breast cancer detection localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 2002, 49, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Elahi, M.A. Confocal Microwave Imaging and Artifact Removal Algorithms for the Early Detection of Breast Cancer. Ph.D. Thesis, University of Galway, Galway, Ireland, 2018. [Google Scholar]
- Guo, L.; Abbosh, A.M. Optimization-Based Confocal Microwave Imaging in Medical Applications. IEEE Trans. Antennas Propag. 2015, 63, 3531–3539. [Google Scholar] [CrossRef]
- Reimer, T.; Pistorius, S. Review and Analysis of Tumour Detection and Image Quality Analysis in Experimental Breast Microwave Sensing. Sensors 2023, 23, 5123. [Google Scholar] [CrossRef] [PubMed]
- Bucci, O.M.; Isernia, T. Electromagnetic inverse scattering: Retrievable information and measurement strategies. Radio Sci. 1997, 32, 2123–2137. [Google Scholar] [CrossRef]
- Abbosh, A.; Bialkowski, K.; Guo, L.; Al-Saffar, A.; Zamani, A.; Trakic, A.; Brankovic, A.; Bialkowski, A.; Zhu, G.; Cook, D.; et al. Clinical electromagnetic brain scanner. Sci. Rep. 2024, 14, 5760. [Google Scholar] [CrossRef]
- IT’IS. Human Models. Available online: https://itis.swiss/virtual-population/virtual-population/overview/ (accessed on 20 October 2024).
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Feng, Y.; Teng, G.; Wang, A.; Yao, Y. Chaotic inertia weight in particle swarm optimization. Proceedings of Second the International Conference on Innovative Computing, Informatio and Control (ICICIC 2007), Kumamoto, Japan, 5–7 September 2007; p. 475. [Google Scholar]
- Xie, Y.; Guo, B.; Xu, L.; Li, J.; Stoica, P. Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans. Biomed. Eng. 2006, 53, 1647–1657. [Google Scholar] [CrossRef]
- Sultan, K.S.; Abbosh, A. Handheld Electromagnetic Scanner for Deep Vein Thrombosis Detection and Monitoring. IEEE Trans. Antennas Propag. 2024, 72, 3210–3224. [Google Scholar] [CrossRef]
Antenna 3 @ Scenario 1 | MIC (2,3) | Antenna 3 @ Scenario 2 | MIC (2,3) |
---|---|---|---|
0.840 | 0.112 | ||
0.713 | 0.231 | ||
0.709 | 0.291 | ||
0.512 | 0.395 | ||
0.387 | 0.413 | ||
0.781 | 0.231 | ||
0.660 | 0.201 | ||
0.321 | 0.321 |
Uniform (16) | Non-Uniform (16) | Uniform (14) | Non-Uniform (14) | |
---|---|---|---|---|
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 |
Case | Target Position (x,y)/Target Size w × l × h (mm) | Uniform 16 Antennas | Non-Uniform 16 Antennas | Uniform 14 Antennas | Non-Uniform 14 Antennas | ||||
---|---|---|---|---|---|---|---|---|---|
PE | SCR | PE | SCR | PE | SCR | PE | SCR | ||
1 | ) | 28.6 mm | 6.18 dB | 0 mm | 6.45 dB | 34.05 mm | 2.33 dB | 2 mm | 5.68 dB |
2 | ) | 48.1 mm | 0.51 dB | 2 mm | 4.56 dB | 43.17 mm | 0.317 dB | 4 mm | 3.71 dB |
3 | ) | 15 mm | 1.81 dB | 1 mm | 6.78 dB | 5.385 mm | 1.515 dB | 1 mm | 5.41 dB |
4 | ) | 12.1 mm | 4.14 dB | 1 mm | 4.86 dB | 16.76 mm | 0.827 dB | 8.7 mm | 2.86 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbosh, Y.M.; Sultan, K.; Guo, L.; Abbosh, A. Non-Uniform Antenna Array for Enhanced Medical Microwave Imaging. Sensors 2025, 25, 3174. https://doi.org/10.3390/s25103174
Abbosh YM, Sultan K, Guo L, Abbosh A. Non-Uniform Antenna Array for Enhanced Medical Microwave Imaging. Sensors. 2025; 25(10):3174. https://doi.org/10.3390/s25103174
Chicago/Turabian StyleAbbosh, Younis M., Kamel Sultan, Lei Guo, and Amin Abbosh. 2025. "Non-Uniform Antenna Array for Enhanced Medical Microwave Imaging" Sensors 25, no. 10: 3174. https://doi.org/10.3390/s25103174
APA StyleAbbosh, Y. M., Sultan, K., Guo, L., & Abbosh, A. (2025). Non-Uniform Antenna Array for Enhanced Medical Microwave Imaging. Sensors, 25(10), 3174. https://doi.org/10.3390/s25103174