The Applicability of a Complete Archive of Keyhole Imagery for Land-Use Change Detection in China (1960–1984)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Data Analysis
2.2.1. Spatial Distribution of Coverage Frequency Between 1960 and 1984
2.2.2. Spatial Distribution of Coverage Frequency in Different Time Periods
2.2.3. Spatial Distribution of Imagery Combinations Across Different Time Periods
2.2.4. Spatial Distribution of Repeated Coverage Across Different Periods
3. Results
3.1. Frequency Distribution of Total Coverage Between 1960 and 1984
3.2. Frequency Distribution of Coverage in Five 5-Year Periods
3.2.1. C1 Imagery
3.2.2. C2 Imagery
3.2.3. C3 Imagery
3.3. Distribution of Imagery Combinations Across Five 5-Year Periods
3.4. Repeat-Coverage Distribution Across Periods
3.5. Application of Paid Keyhole Images Selection for Multiple Periods
4. Discussion
4.1. Potential of Declassified Imagery for Extending Historical Land-Use Change Research
4.2. Restrictions of Keyhole Imagery and Other Historical Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Wang, M.; Wander, M.; Mueller, S.; Martin, N.; Dunn, J.B. Evaluation of survey and remote sensing data products used to estimate land use change in the United States: Evolving issues and emerging opportunities. Environ. Sci. Policy 2022, 129, 68–78. [Google Scholar] [CrossRef]
- Stanimirova, R.; Tarrio, K.; Turlej, K.; McAvoy, K.; Stonebrook, S.; Hu, K.-T.; Arévalo, P.; Bullock, E.L.; Zhang, Y.; Woodcock, C.E.; et al. A global land cover training dataset from 1984 to 2020. Sci. Data 2023, 10, 879. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Fu, Z.; Fu, B.; Yan, C.; Zeng, H.; Zhao, W. Dynamics of land cover changes and driving forces in China’s drylands since the 1970 s. Land Use Policy 2024, 140, 107097. [Google Scholar] [CrossRef]
- Dashora, A.; Lohani, B.; Malik, J. A repository of earth resource information CORONA satellite programme. Curr. Sci. 2007, 92, 926–932. [Google Scholar]
- Richelson, J. The keyhole satellite program. J. Strateg. Stud. 1984, 7, 121–153. [Google Scholar] [CrossRef]
- Fowler, M.J.F. Declassified Intelligence Satellite Photographs. In Archaeology from Historical Aerial and Satellite Archives; Hanson, W.S., Oltean, I.A., Eds.; Springer: New York, NY, USA, 2013; pp. 47–66. [Google Scholar]
- Di Giacomo, G.; Scardozzi, G. Multitemporal High-Resolution Satellite Images for the Study and Monitoring of an Ancient Mesopotamian City and its Surrounding Landscape: The Case of Ur. Int. J. Geophys. 2012, 2012, 716296. [Google Scholar] [CrossRef]
- Shahbandeh, M.; Kaim, D.; Kozak, J. Using CORONA Imagery to Study Land Use and Land Cover Change—A Review of Applications. Remote Sens. 2023, 15, 2793. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, W.; Li, M.; Lv, Y. Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019. Remote Sens. 2020, 12, 3191. [Google Scholar] [CrossRef]
- Song, D.-X.; Huang, C.; Sexton, J.O.; Channan, S.; Feng, M.; Townshend, J.R. Use of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 103, 81–92. [Google Scholar] [CrossRef]
- Fowler, M.J.F. Archaeology through the keyhole: The serendipity effect of aerial reconnaissance revisited. Interdiscip. Sci. Rev. 2006, 29. [Google Scholar] [CrossRef]
- Shangguan, D.H.; Bolch, T.; Ding, Y.J.; Kröhnert, M.; Pieczonka, T.; Wetzel, H.U.; Liu, S.Y. Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data. Cryosphere 2015, 9, 703–717. [Google Scholar] [CrossRef]
- Makovics, J.L. Utilising Declassified Cold War Satellite Imagery (KH-9 Hexagon) for Remote Sensing of Historic Hydraulic Management Features in North Africa. In Proceedings of the 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Oran, Algeria, 15–17 April 2024; pp. 391–395. [Google Scholar]
- Brecheisen, Z.; Hamp-Adams, N.; Tomasek, A.; Foster, E.J.; Filley, T.; Soto, M.V.; Reynoso, L.Z.; de Lima Moraes, A.; Schulze, D.G. Using Remote Sensing to Discover Historic Context of Human-Environmental Water Resource Dynamics. J. Contemp. Water Res. Educ. 2020, 171, 74–92. [Google Scholar] [CrossRef]
- Chang, A.Y.; Parrales, M.E.; Jimenez, J.; Sobieszczyk, M.E.; Hammer, S.M.; Copenhaver, D.J.; Kulkarni, R.P. Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries. Int. J. Health Geogr. 2009, 8, 49. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Lasaponara, R.; Yang, R.; Chen, F.; Li, X.; Masini, N. Corona Satellite Pictures for Archaeological Studies: A Review and Application to the Lost Forbidden City of the Han–Wei Dynasties. Surv. Geophys. 2018, 39, 1303–1322. [Google Scholar] [CrossRef]
- Nistor, C.; Vîrghileanu, M.; Cârlan, I.; Mihai, B.-A.; Toma, L.; Olariu, B. Remote Sensing-Based Analysis of Urban Landscape Change in the City of Bucharest, Romania. Remote Sens. 2021, 13, 2323. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, Q.; Li, F.; Wang, Y.J.I.T.o.D.; Insulation, E. Study on corona discharge spatial structure and stages division based on visible digital image colorimetry information. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1448–1455. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis, D.G. Colour to Greyscale Pixels: Re-seeing Greyscale Archived Aerial Photographs and Declassified Satellite CORONA Images Based on Image Fusion Techniques. Archaeol. Prospect. 2016, 23, 231–241. [Google Scholar] [CrossRef]
- Agapiou, A. Land Cover Mapping from Colorized CORONA Archived Greyscale Satellite Data and Feature Extraction Classification. Land 2021, 10, 771. [Google Scholar] [CrossRef]
- Stratoulias, D.; Grekousis, G. Information Extraction and Population Estimates of Settlements from Historic Corona Satellite Imagery in the 1960s. Sensors 2021, 21, 2423. [Google Scholar] [CrossRef] [PubMed]
- Hamandawana, H.; Eckardt, F.; Ringrose, S. Proposed methodology for georeferencing and mosaicking Corona photographs. Int. J. Remote Sens. 2007, 28, 5–22. [Google Scholar] [CrossRef]
- Darack, E. Spying from above: How the atmosphere helped shape our modern surveillance systems. Weatherwise 2019, 72, 14–25. [Google Scholar] [CrossRef]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Ramankutty, N.; Graumlich, L.; Achard, F.; Alves, D.; Chhabra, A.; DeFries, R.S.; Foley, J.A.; Geist, H.; Houghton, R.A.; Goldewijk, K.K.; et al. Global Land-Cover Change: Recent Progress, Remaining Challenges. In Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 9–39. [Google Scholar]
- Pontius, R.G., Jr.; Roopa, K.; Laura, S.; Yan, Y.; Zhang, Y. Methods to summarize change among land categories across time intervals. J. Land Use Sci. 2017, 12, 218–230. [Google Scholar] [CrossRef]
- Li, H.; Yao, W.; Zhang, M.; Yang, X.; Wang, Q. Spatial heterogeneity of keyhole imagery coverage in China and imagery dataset cost estimation. Sci. Rep. 2025, 15, 202. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Yao, W.; Liu, H.; Song, C.; Sun, J. Multitemporal Analysis of Declassified Keyhole Imagery’ for Landuse Change Detection in China (1960~1984): A Python-Based Spatial Coverage and Automation Workflow. Remote Sens. 2025, 17, 822. [Google Scholar] [CrossRef]
- Casana, J. Global-Scale Archaeological Prospection using CORONA Satellite Imagery: Automated, Crowd-Sourced, and Expert-led Approaches. J. Field Archaeol. 2020, 45, S89–S100. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Liu, Y.; Wang, S.; Wang, J.; Zhai, R. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef]
- Crowther, M.S.; Lunney, D.; Lemon, J.; Stalenberg, E.; Wheeler, R.; Madani, G.; Ross, K.A.; Ellis, M. Climate-mediated habitat selection in an arboreal folivore. Ecography 2014, 37, 336–343. [Google Scholar] [CrossRef]
- Abidde, S.O. The US-China-Taiwan Relations: Military Invasion, Annexation, and Verbal Brinkmanship. In China and Taiwan in Africa: The Struggle for Diplomatic Recognition and Hegemony; Abidde, S.O., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 251–272. [Google Scholar]
- Gobarev, V.M. Soviet policy toward China: Developing nuclear weapons 1949–1969. J. Slav. Mil. Stud. 1999, 12, 1–53. [Google Scholar] [CrossRef]
- Babiarz, R. The People’s Nuclear Weapon: Strategic Culture and the Development of China’s Nuclear Weapons Program. Comp. Strategy 2015, 34, 422–446. [Google Scholar] [CrossRef]
- Chavez, A.B.; Perz, S.G. Path dependency and contingent causation in policy adoption and land use plans: The case of Southeastern Peru. Geoforum 2013, 50, 138–148. [Google Scholar] [CrossRef]
- Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity? Agric. Ecosyst. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Li, Z.; Mengdi, Z.; Yukun, Z.; Li, Y. Automatic detection of beacon towers in historical aerial images using improved FCOS. Int. J. Remote Sens. 2023, 44, 1089–1113. [Google Scholar] [CrossRef]
- Balha, A.; Mallick, J.; Pandey, S.; Gupta, S.; Singh, C.K. A comparative analysis of different pixel and object-based classification algorithms using multi-source high spatial resolution satellite data for LULC mapping. Earth Sci. Inform. 2021, 14, 2231–2247. [Google Scholar] [CrossRef]
- Ghuffar, S.; Bolch, T.; Rupnik, E.; Bhattacharya, A. A Pipeline for Automated Processing of Declassified Corona KH-4 (1962–1972) Stereo Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Mbatha, N.; Shikwambana, L. First Observations of Cirrus Clouds Using the UZ Mie Lidar over uMhlathuze City, South Africa. Appl. Sci. 2022, 12, 4631. [Google Scholar] [CrossRef]
- Feng, L.; Wang, X. Quantifying Cloud-Free Observations from Landsat Missions: Implications for Water Environment Analysis. J. Remote Sens. 2024, 4, 0110. [Google Scholar] [CrossRef]
- Deshpande, P.; Anirudh, B.; Onkar, D.; Tripathi, S. Historical land cover classification from CORONA imagery using convolutional neural networks and geometric moments. Int. J. Remote Sens. 2021, 42, 5144–5171. [Google Scholar] [CrossRef]
- Hammer, E.; Lauricella, A. Historical Imagery of Desert Kites in Eastern Jordan. Near East. Archaeol. 2017, 80, 74–83. [Google Scholar] [CrossRef]
- Uhl, J.H.; Leyk, S.; Chiang, Y.-Y.; Knoblock, C.A. Towards the automated large-scale reconstruction of past road networks from historical maps. Comput. Environ. Urban Syst. 2022, 94, 101794. [Google Scholar] [CrossRef] [PubMed]
- Janus, J.; Bożek, P.; Taszakowski, J.; Doroż, A. Decaying villages in the centre of Europe with no population decline: Long-term analysis using historical aerial images and remote sensing data. Habitat Int. 2022, 121, 102520. [Google Scholar] [CrossRef]
Satellite | Resolution (Feet/m) | Number of Images | Period Start and End | Singe Area (km2) | Resolution Category | Total Number |
---|---|---|---|---|---|---|
KH-7 | (2 to 4)/(0.9) | 2693 | July 1963~June 1967 | 1100 ± 848 | C1 | 106,824 |
KH-9H | (2 to 4)/(0.9) | 104,231 | March 1973~October 1980 | 6222 ± 4854 | ||
KH-4B | 6/1.8 | 42,413 | September 1967~May 1972 | 4048 ± 855 | C2 | 152,129 |
KH-4A | 9/2.8 | 109,716 | August 1963~September 1969 | 5137 ± 703 | ||
KH-9L | (20 to 30)/7.6 | 6813 | June 1971~October 1984 | 29,133 ± 2012 | C3 | 21,685 |
KH-3 | 25/7.6 | 1911 | August 1961~December 1961 | 9396 ± 1272 | ||
KH-4 | 25/7.6 | 12,307 | February 1962~December 1963 | 10,524 ± 7053 | ||
KH-2 | 30/9.1 | 654 | December 1960~July 1961 | 11,707 ± 5187 | ||
KH-1 | 40/12.2 | 30 | August 1960 | 9613 ± 334 | Not accounted | 533 |
KH-6 | 6/1.8 | 44 | July 1963~August 1963 | 10,524 ± 7053 | ||
KH-5 | 460/153.3 | 459 | February 1961~August 1964 | 337,664 ± 45,073 |
Datasets | Resolution | Total Image Number | Image Number per Period | Start Date | End Date | ||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | |||||
Paid | C1 | 68 | 0 | 0 | 39 | 22 | 7 | 20 June 1971 | 4 February 1981 |
C2 | 69 | 13 | 44 | 12 | 0 | 0 | 17 February 1964 | 27 September 1971 | |
C3 | 28 | 18 | 0 | 0 | 7 | 3 | 30 August 1961 | 2 September 1980 | |
Free | C1 | 5 | 0 | 0 | 2 | 3 | 0 | 20 June 1971 | 19 August 1979 |
C2 | 14 | 0 | 10 | 4 | 0 | 0 | 23 August 1965 | 22 November 1970 | |
C3 | 5 | 2 | 0 | 0 | 0 | 2 | 30 August 1961 | 2 September 1980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, T.; Sun, J. The Applicability of a Complete Archive of Keyhole Imagery for Land-Use Change Detection in China (1960–1984). Sensors 2025, 25, 3147. https://doi.org/10.3390/s25103147
Li H, Wang T, Sun J. The Applicability of a Complete Archive of Keyhole Imagery for Land-Use Change Detection in China (1960–1984). Sensors. 2025; 25(10):3147. https://doi.org/10.3390/s25103147
Chicago/Turabian StyleLi, Hao, Tao Wang, and Jinyu Sun. 2025. "The Applicability of a Complete Archive of Keyhole Imagery for Land-Use Change Detection in China (1960–1984)" Sensors 25, no. 10: 3147. https://doi.org/10.3390/s25103147
APA StyleLi, H., Wang, T., & Sun, J. (2025). The Applicability of a Complete Archive of Keyhole Imagery for Land-Use Change Detection in China (1960–1984). Sensors, 25(10), 3147. https://doi.org/10.3390/s25103147