Detecting Burn Severity and Vegetation Recovery After Fire Using dNBR and dNDVI Indices: Insight from the Bosco Difesa Grande, Gravina in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Burn Severity and Vegetation Recovery
Index | Name | Equations | Reference |
---|---|---|---|
NBR | Normalized Burn Ratio | (NIR − SWIR)/(NIR + SWIR) NBR = (B08 − B12)/(B08 + B12) | Keeley [65] |
NDVI | Normalized Difference Vegetation Index | (NIR − RED)/(NIR + RED) NDVI = (B8 − B4)/(B8 + B4) | Rouse et al. [66] |
dNBR | Differenced Normalized Burn Ratio | dNBR = NBRpre-fire − NBRpost-fire | Key and Benson [67] |
dNDVI | Differenced Normalized Difference Vegetation Index | dNDVI = NDVIpre-fire − NDVpost-fire | Escuin et al. [68] |
2.3. GEE-Based Wildfire Monitoring and Vegetation Recovery Analysis
3. Results and Discussion
3.1. Time Series of Mean NDVI and NBR
3.2. Burn Severity
3.3. Burn Severity and Vegetation Regrowth
3.4. Vegetation Recovery Evaluation in Burned and Nonburned Regions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pausas, J.; Keeley, J.E. Wildfires as an ecosystem service. Front. Ecol. Environ. 2019, 17, 289–295. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Crystal, A.K.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 29 December 2024).
- Castagna, J.; Senatore, A.; Pellis, G.; Vitullo, M.; Bencardino, M.; Mendicino, G. Uncertainty assessment of remote sensing- and ground-based methods to estimate wildfire emissions: A case study in Calabria region (Italy). Air Qual. Atmos. Health 2023, 16, 705–717. [Google Scholar] [CrossRef]
- Cunningham, C.; Williamson, G.J.; Bowman, D.M.J.S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 2024, 8, 1420–1425. [Google Scholar] [CrossRef]
- Das, K. Deep Learning Techniques for Predicting Wildfires in Calabria Italy Using Environmental Parameters. In New Trends in Database and Information Systems, France; Springer: Cham, Switzerland, 2025; Volume 2186, pp. 372–379. [Google Scholar]
- De Oliveira-Júnior, J.F.; Mendes, D.; Szabo, S.; Singh, S.K.; Jamjareegulgarn, P.; Cardoso, K.R.A.; Bertalan, L.; da Silva, M.V.; da Rosa Ferraz Jardim, A.M.; Lyra, G.B.; et al. Impact of the El Niño on Fire Dynamics on the African Continent. Earth Syst. Environ. 2024, 8, 45–61. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Wanyama, D.; Doughty, R.; Peiro, H.; Crowell, S. Increasing Fire Activity in African Tropical Forests Is Associated with Deforestation and Climate Change. Geophys. Res. Lett. 2024, 51, e2023GL106240. [Google Scholar] [CrossRef]
- Yu, Y.; Mao, J.; Thornton, P.E.; Notaro, M.; Wullschleger, S.D.; Shi, X.; Hoffman, F.M.; Wang, Y. Quantifying the drivers and predictability of seasonal changes in African fire. Nat. Commun. 2020, 9, 2893. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M. Climate versus human-driven fire regimes in Mediterranean landscapes: The Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat. Sci. Rev. 2008, 27, 1181–1196. [Google Scholar] [CrossRef]
- Camia, A.; Amatulli, G. Weather Factors and Fire Danger in the Mediterranean. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Salesa, D.; Baeza, M.J.; Santana, W.M. Fire severity and prolonged drought do not interact to reduce plant regeneration capacity but alter community composition in a Mediterranean shrubland. Santana 2024, 20, 61. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Stephens, S.L.; Agee, J.K.; Fulé, P.Z.; North, M.P.; Romme, W.H.; Swetnam, T.W.; Turner, M.G. Managing forests and fire in changing climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef]
- Dyukarev, A.G.; Klimova, N.V.; Nikiforov, A.N.; Chernova, N.A.; Kopysov, S.G. Resilience of forest ecosystems to climate change. Contemp. Probl. Ecol. 2022, 15, 245–252. [Google Scholar] [CrossRef]
- Tangney, R.; Paroissien, R.; Le Bret, T.; Thomsen, A.; Doyle, C.A.T.; Ondik, M.; Miller, R.G.; Miller, B.P.; Ooi, M.K.J. Success of post-fire plant recovery strategies varies with shifting fire seasonality. Commun. Earth Environ. 2022, 3, 126. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H.; Chen, D.; Wang, Y.; Yue, X.; He, B.; Guo, L.; Yuan, W.; Zhong, Z.; Huang, L.; et al. Global patterns and drivers of post-fire vegetation productivity recovery. Nat. Geosci. 2024, 17, 874–881. [Google Scholar] [CrossRef]
- Zahabnazouri, S.; Wigand, P.; Jabbari, A. Biogeomorphology of mega nebkha in the Fahraj Plain, Iran: Sensitive indicators of human activity and climate change. Aeolian Res. 2021, 49, 100652. [Google Scholar] [CrossRef]
- Shirzadi, L.; Hosseinzadeh, M.; Nosrati, K.; Beyranvand, S.M.; Zahabnazouri, S.; Capolongo, D. An evaluation of sheet erosion using dendrogeomorphological methods on Quercus brantii roots in the northern catchment of Zarivar Lake (Western Iran). Arab. J. Geosci. 2022, 16, 142. [Google Scholar] [CrossRef]
- Linares, M.; Ni Meister, W. Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing. Remote Sens. 2024, 16, 1461. [Google Scholar] [CrossRef]
- Crotteau, J.S.; Varner, J.M., III; Martin, W.R. Post-fire regeneration across a fire severity gradient in the southern Cascades. For. Ecol. Manag. 2013, 287, 103–112. [Google Scholar] [CrossRef]
- Blanco-Rodríguez, M.Á.; Ameztegui, A.; Gelabert, P.; Rodrigues, M.; Coll, L. Short-term recovery of post-fire vegetation is primarily limited by drought in Mediterranean forest ecosystems. Fire Ecol. 2023, 19, 68. [Google Scholar] [CrossRef]
- Qiu, L.; Fan, L.; Sun, L.; Zeng, Z.; Feng, L.; Yue, C.; Zheng, C. Higher burn severity stimulates postfire vegetation and carbon recovery in California. Agric. For. Meteorol. 2023, 342, 109750. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Soil and Water; General Technical Report; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005. [Google Scholar] [CrossRef]
- Qiang, W.; Moreno-Martínez, Á.; Jordi, M.-M.; Campos-Taberner, M.; Camps-Valls, G. Estimation of vegetation traits with kernel NDVI. J. Photogramm. Remote Sens. 2023, 195, 408–417. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2025. [Google Scholar]
- Goward, S.; Tucker, C.; Dye, D. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 1985, 64, 3–14. [Google Scholar] [CrossRef]
- Lopes, L.; Dias, F.; Fernandes, O.; Acácio, V. A remote sensing assessment of oak forest recovery after postfire restoration. Eur. J. For. Res. 2024, 143, 1000–1014. [Google Scholar] [CrossRef]
- Hao, B.; Xu, X.; Fei, W.; Tan, L. Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery. Forests 2022, 13, 883. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Wulder, R.E.; White, J.C. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Van Gerrevink, M.J.; Veraverbeke, S. Evaluating the Hyperspectral Sensitivity of the Differenced Normalized Burn Ratio for Assessing Fire Severity. Remote Sens. 2021, 13, 4611. [Google Scholar] [CrossRef]
- Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2007, 29, 1053–1073. [Google Scholar] [CrossRef]
- Phinn, P.; Erskine, P.D. Fire Severity and Vegetation Recovery on Mine Site Rehabilitation Using WorldView-3 Imagery. Fire 2018, 1, 22. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Bravo-Montero, L.; Carrión-Mero, P.; Velastegui-Montoya, A.; Berrezueta, E. Forest Fire Assessment Using Remote Sensing to Support the Development of an Action Plan Proposal in Ecuador. Remote Sens. 2022, 14, 1783. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Sun, Y.; Dong, G.; Li, Y.; Ma, M. Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing. Remote Sens. 2023, 15, 2323. [Google Scholar] [CrossRef]
- Meng, R.; Zhao, F. Remote sensing of fire effects: A review for recent advances in burned area and burn severity mapping. In Remote Sensing of Hydrometeorological Hazards; Petropoulos, G.P., Islam, T., Eds.; Taylor & Francis Group: Oxford, UK, 2017. [Google Scholar]
- Pérez-Cabello, F.; Montorio, R.; Borini Alves, D. Remote sensing techniques to assess post-fire vegetation recovery. Curr. Opin. Environ. Sci. Health 2021, 21, 100251. [Google Scholar] [CrossRef]
- Morresi, D.; Vitali, A.; Urbinati, C.; Matteo, G. Forest Spectral Recovery and Regeneration Dynamics in Stand-Replacing Wildfires of Central Apennines Derived from Landsat Time Series. Remote Sens. 2019, 11, 308. [Google Scholar] [CrossRef]
- Jodhani, K.H.; Patel, H.; Soni, U.; Patel, R.; Valodara, B.; Gupta, N.; Patel, A.; Omar, P.J. Assessment of forest fire severity and land surface temperature using Google Earth Engine: A case study of Gujarat State, India. Fire Ecol. 2024, 20, 23. [Google Scholar] [CrossRef]
- Lasaponara, R.; Abate, N.; Fattore, C.; Aromando, A.; Cardettini, G.; Di Fonzo, M. On the use of Sentinel-2 NDVI time series and Google Earth Engine to detect land-use/land-cover changes in fire-affected areas. Remote Sens. 2022, 14, 4723. [Google Scholar] [CrossRef]
- Vicario, S.; Adamo, M.; Alcaraz-Segura, D.; Tarantino, C. Bayesian Harmonic Modelling of Sparse and Irregular Satellite Remote Sensing Time Series of Vegetation Indexes: A Story of Clouds and Fires. Remote Sens. 2020, 12, 83. [Google Scholar] [CrossRef]
- Forte, L. Flora e Vegetazione del Bosco Comunale “Difesa Grande” di Gravina in Puglia; Luigi, F., Ed.; 2001; pp. 183–228. [Google Scholar]
- Manicone, R.P.; Mannerucci, F.; Luisi, N.; Lerario, P. La Flora e la Vegetazione Spontanea Della Puglia Nella Scienza, Nell’arte e Nella Storia. 1993. Available online: https://openlibrary.org/works/OL18914724W/Antimimesis?edition= (accessed on 11 May 2025).
- Kapur, B.; Steduto, P.; Mladen, T. Prediction of climatic change for the next 100 years in Southern Italy. Ital. J. Agron. 2007, 2, 365–371. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P. Climate change and forest disturbances. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Avetisyan, D.; Velizarova, E.; Filchev, L. Post-Fire Forest Vegetation State Monitoring through Satellite Remote Sensing and In Situ Data. Remote Sens. 2022, 14, 6266. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kumar Thukral, A. Comparison of different reflectance indices for vegetation analysis using Landsat-TM data. Remote Sens. Appl. Soc. Environ. 2018, 12, 70–77. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. Photogramm. Remote Sens 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Shafeian, E.; Mood, B.J.; Belcher, K.W.; Laroque, C.P. Assessing spatial distribution and quantification of native trees in Saskatchewan’s prairie landscape using remote sensing techniques. Eur. J. Remote Sens. 2025, 58, 2438638. [Google Scholar] [CrossRef]
- Mohammad, L.; Bandyopadhyay, J.; Sk, R.; Mondal, I.; Nguyen, T.T.; Francesco Cesare Lama, G.; Tran Anh, D.; Bandyopadhyay, J.; Rubel, S.; Mondal, I.; et al. Estimation of agricultural burned affected area using NDVI and NBR satellite-based empirical models. J. Environ. Manag. 2023, 343, 118226. [Google Scholar] [CrossRef]
- Bretreger, D.; Hancock, G.R.; Lowry, J.; Senanayake, I.P.; Yeo, I.-Y. The Impacts of Burn Severity and Frequency on Erosion in Western Arnhem Land, Australia. Sensors 2024, 24, 2282. [Google Scholar] [CrossRef]
- Llorens, R.; Antonio Sobrino, J.; Fernández, C.; Fernández-Alonso, J.M.; Antonio Vega, J. A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102243. [Google Scholar] [CrossRef]
- Alcaras, E.; Costantino, D.; Guastaferro, F.; Parente, C.; Pepe, M. Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery. Remote Sens. 2022, 14, 1727. [Google Scholar] [CrossRef]
- Leigh, L.B.; Morgan, P.; Hudak, A.T.; Bobbitt, M.; Lewis, S.A.; Smith, A.M.S.; Robichaud, P.R. Post-fire burn severity and vegetation response following eight large wildfires across the Western United States. Fire Ecol. 2007, 3, 91–108. [Google Scholar]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; Report RMRS-GTR-164-CD: LA 1-51; USDA: Ogden, UT, USA, 2006. [Google Scholar]
- Keeley, E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd NASA Goddard Space Flight Center ERTS-1 Symposium, Greenbelt, MD, USA, 10–14 December 1974; Volume 1, pp. 309–317. [Google Scholar]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Henareh Khalyani, A. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019, 15, 8. [Google Scholar] [CrossRef]
- Lai, R.; Oguchi, T. Evaluating Spatiotemporal Patterns of Post-Eruption Vegetation Recovery at Unzen Volcano, Japan, from Landsat Time Series. Remote Sens. 2022, 14, 5419. [Google Scholar] [CrossRef]
- Bowd, E.J.; Egidi, E.; Lindenmayer, D.B.; Wardle, D.A.; Kardol, P.; Cary, G.J.; Foster, C. Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest. J. Ecol. 2022, 110, 1687–1703. [Google Scholar] [CrossRef]
- Wolf, K.D.; Higuera, P.E.; Davis, K.T.; Dobrowski, S.Z. Wildfire impacts on forest microclimate vary with biophysical context. Ecosphere 2021, 12, e03467. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest. Forests 2017, 8, 76. [Google Scholar] [CrossRef]
- Jo Celebrezzee, J.V.; Franz, M.C.; Andrus, R.A.; Stahl, A.T.; Steen-Adams, M.; Meddens, A.J.H. A fast spectral recovery does not necessarily indicate post-fire forest recovery. Fire Ecol. 2024, 20, 54. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S.; Foote, J.; Kemmett, S.; Price, K.; Leslie, A.; Viereck, L. Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 2004, 34, 267–273. [Google Scholar] [CrossRef]
- Certini, C. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
Fire Location | Date: Month/Day/Year | Area (ha) |
---|---|---|
Bosco Difesa Grande-Rifessa Pantone | 07/12/2010 | 0.39 |
Bosco Difesa Grande-Rifessa Pantone | 07/12/2010 | 0.918 |
Bosco Comunale | 06/25/2011 | 1.63 |
Bosco Comunale Difesa Grande | 06/29/2011 | 19.93 |
Bosco Comunale Difesa Grande | 07/10/2011 | 27.80 |
Bosco Comunale Difesa Grande | 06/30/2012 | 12.95 |
Bosco Comunale Difesa Grande | 06/30/2012 | 16.34 |
Bosco Difesa Grande | 08/15/2013 | 7.14 |
Difesa Grande | 08/12/2017 | 24.13 |
Difesa Grande | 08/12/2017 | 44.30 |
Difesa Grande | 08/12/2017 | 1240.25 |
Difesa Grande | 07/28/2021 | 935.67 |
dNBR < 0.100 | dNDVI < 0.07 | Very Low/Unburned |
---|---|---|
0.100–0.255 | 0.08–0.20 | Low |
0.256–0.419 | 0.21–0.33 | Moderate |
0.420–0.660 | 0.34–0.44 | High |
dNBR > 0.660 | dNDVI > 0.44 | Very High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahabnazouri, S.; Belmont, P.; David, S.; Wigand, P.E.; Elia, M.; Capolongo, D. Detecting Burn Severity and Vegetation Recovery After Fire Using dNBR and dNDVI Indices: Insight from the Bosco Difesa Grande, Gravina in Southern Italy. Sensors 2025, 25, 3097. https://doi.org/10.3390/s25103097
Zahabnazouri S, Belmont P, David S, Wigand PE, Elia M, Capolongo D. Detecting Burn Severity and Vegetation Recovery After Fire Using dNBR and dNDVI Indices: Insight from the Bosco Difesa Grande, Gravina in Southern Italy. Sensors. 2025; 25(10):3097. https://doi.org/10.3390/s25103097
Chicago/Turabian StyleZahabnazouri, Somayeh, Patrick Belmont, Scott David, Peter E. Wigand, Mario Elia, and Domenico Capolongo. 2025. "Detecting Burn Severity and Vegetation Recovery After Fire Using dNBR and dNDVI Indices: Insight from the Bosco Difesa Grande, Gravina in Southern Italy" Sensors 25, no. 10: 3097. https://doi.org/10.3390/s25103097
APA StyleZahabnazouri, S., Belmont, P., David, S., Wigand, P. E., Elia, M., & Capolongo, D. (2025). Detecting Burn Severity and Vegetation Recovery After Fire Using dNBR and dNDVI Indices: Insight from the Bosco Difesa Grande, Gravina in Southern Italy. Sensors, 25(10), 3097. https://doi.org/10.3390/s25103097