Research on the Integration of Sensing and Communication Based on Fractional-Order Fourier Transform
Abstract
:1. Introduction
2. Related Technologies
2.1. Realization of LFM Parameter Estimation Based on FRFT
2.2. Optimized Fractional Order Domain Search Algorithm
2.2.1. Golden Section Method
2.2.2. Parabolic Interpolation
2.2.3. Brent Method
2.3. Research on the Anti-Frequency Sweeping Jamming Method That Is Based on the Fractional Domain Matching Order
3. Simulation and Performance Comparison
3.1. Simulation and Performance Comparison of Three Search Algorithms
3.2. Integrated Frame Design
3.3. LFM Load Performances Simulation
3.4. Anti-Frequency Sweeping Interference Performance Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bithas, P.S.; Efthymoglou, G.P.; Kanatas, A.G.; Maliatsos, K. Joint Sensing and Communications in Unmanned-Aerial-Vehicle-Assisted Systems. Drones 2024, 8, 656. [Google Scholar] [CrossRef]
- Ren, Y.; Friderikos, V. Interference Aware Path Planning for Mobile Robots under Joint Communication and Sensing in mmWave Networks. Comput. Commun. 2024, 225, 1–9. [Google Scholar] [CrossRef]
- Valsalan, P.; Hasan, N.U.; Baig, I.; Zghaibeh, M.; Farooq, U.; Suhail, S. Unleashing the Potential: The Joint of 5G and 6G Technologies in Enabling Advanced IoT Communication and Sensing Systems: A Comprehensive Review and Future Prospects. J. Commun. 2024, 19, 523–535. [Google Scholar] [CrossRef]
- Luo, G.; Zhan, S.; Liang, C.; Gao, Z.; Zhao, Y.; Huang, L. An Incentive Mechanism for Joint Sensing and Communication Vehicular Crowdsensing by Deep Reinforcement Learning. Comput. Netw. 2025, 260, 111099. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; Shen, Y.; Li, S. Reinforcement Learning-Based Resource Allocation Scheme of NR-V2X Sidelink for Joint Communication and Sensing. Sensors 2025, 25, 302. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, S.; Xue, X.; Zheng, X. Wideband FMCW Radar for Long-Distance Target Detection Based on Photonic Chirp Pulse Stitching. Opt. Lett. 2024, 49, 5874–5877. [Google Scholar] [CrossRef]
- Saputera, Y.P.; Wahab, M.; Wahyu, Y. Linear Frequency Modulation—Continuous Wave (LFM—CW) Radar Implementation Using GNU Radio and USRP. In Proceedings of the TENCON 2015–2015 IEEE Region 10 Conference, Macau, China, 1–4 November 2015; pp. 1–5. [Google Scholar]
- Liu, F.; Xu, H.; Tao, R.; Wang, Y. Research on Resolution between Multi-Component LFM Signals in the Fractional Fourier Domain. Sci. China Inf. Sci. 2012, 55, 1301–1312. [Google Scholar] [CrossRef]
- Chen, R.; Yang, B.; Wang, W.; Chen, P. Range and Velocity Estimation for DFRFT-OFDM-Based Joint Communication and Sensing Systems. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Liu, Y.; Zhu, J.; Tang, B.; Zhang, Q. Non-Cooperative Detection Method of MIMO-LFM Signals with FRFT Based on Entropy of Slice. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2018, E101-A, 1940–1943. [Google Scholar] [CrossRef]
- Wu, Y.J.; Fu, G.; Zhu, Y.M. LFM Signal Detection Method Based on Fractional Fourier Transform. Adv. Mater. Res. 2014, 989–994, 4001–4004. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, Y.; Xu, H.; Zhang, S.; Zhao, H. An Efficient and Accurate Three-Dimensional Imaging Algorithm for Forward-Looking Linear-Array Sar with Constant Acceleration Based on FrFT. Signal Process. 2021, 178, 107764. [Google Scholar] [CrossRef]
- Tao, H.; Yang, J.; Tao, J. Research on Linear Frequency Modulation Detection Technology Based on Fractional Fourier Transform. Wirel. Netw. 2023, 29, 19–27. [Google Scholar] [CrossRef]
- Li, K.; Liang, X.; Zhang, Q.; Luo, Y.; Li, H. Micro-Doppler Signature Extraction and ISAR Imaging for Target with Micromotion Dynamics. IEEE Geosci. Remote Sens. Lett. 2011, 8, 411–415. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Y. A New MIMO SAR System Based on Alamouti Space-Time Coding Scheme and OFDM-LFM Waveform Design. In Proceedings of the SAR Image Analysis, Modeling, and Techniques XV, Toulouse, France, 21–24 September 2015; Volume 9642, pp. 118–124. [Google Scholar]
- Liu, Y.; Zhao, Y.; Zhu, J.; Wang, J.; Tang, B. A Switched-Element System Based Direction of Arrival (DOA) Estimation Method for Un-Cooperative Wideband Orthogonal Frequency Division Multi Linear Frequency Modulation (OFDM-LFM) Radar Signals. Sensors 2019, 19, 132. [Google Scholar] [CrossRef]
- Yang, Z.; Li, P.; Liu, J.; Xie, R.; Rui, Y. Signal Design for Integrated Radar Communication System Based on Constant Envelope OFDM-Chirp. In Proceedings of the Fifteenth International Conference on Signal Processing Systems (ICSPS 2023), Xi’an, China, 28 March 2024; SPIE: St. Bellingham, WA, USA, 2024; Volume 13091, pp. 453–460. [Google Scholar]
- Liu, Y.; Zhao, Y.; Zhu, J.; Xiong, Y.; Tang, B. Iterative High-Accuracy Parameter Estimation of Uncooperative OFDM-LFM Radar Signals Based on FrFT and Fractional Autocorrelation Interpolation. Sensors 2018, 18, 3550. [Google Scholar] [CrossRef]
- Li, S.; Sun, Z.; Zhang, X.; Chen, W.; Xu, D. Joint DOA and Frequency Estimation for Linear Array with Compressed Sensing PARAFAC Framework. J. Circuits Syst. Comput. 2017, 26, 1750136. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Zhang, Q.; Liu, B. Joint Customer Assignment, Power Allocation, and Subchannel Allocation in a UAV-Based Joint Radar and Communication Network. IEEE Internet Things J. 2024, 11, 29643–29660. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Zhang, Q.; Zhang, L.; Liu, B.; Xu, H.-X. Joint Power, Bandwidth, and Subchannel Allocation in a UAV-Assisted DFRC Network. IEEE Internet Things J. 2025, 12, 11633–11651. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, T.; Guo, W.; Zhang, B.; Zhou, Z. An Underwater Target Azimuth Trajectory Enhancement Approach in BTR. Appl. Acoust. 2025, 230, 110373. [Google Scholar] [CrossRef]
- Yin, T.; Guo, W.; Zhu, J.; Wu, Y.; Zhang, B.; Zhou, Z. Underwater Broadband Target Detection by Filtering Scanning Azimuths Based on Features of Subband Peaks. IEEE Sens. J. 2025, 25, 13601–13609. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, B.; Ai, W.; Xie, Z.; Zhu, J. Radar Transceiver Design for Extended Targets Based on Optimal Linear Detector. IEEE Trans. Aerosp. Electron. Syst. 2025, 1–12. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, Z.; Jiang, N.; Song, Y.; Han, S.; Liu, W.; Huang, X. Delay-Doppler Map Shaping through Oversampled Complementary Sets for High-Speed Target Detection. Remote Sens. 2024, 16, 2898. [Google Scholar] [CrossRef]
- Aldimashki, O.; Serbes, A. LFM Signal Parameter Estimation in the Fractional Fourier Domains: Analytical Models and a High-Performance Algorithm. Signal Process. 2024, 214, 109224. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, M.; Li, Y.; Mu, H.; Wu, B.; Liu, Y.; Yan, F. Joint Modulation Format Identification and Frequency Offset Estimation Based on Superimposed LFM Signal and FrFT. IEEE Photonics J. 2019, 11, 7204712. [Google Scholar] [CrossRef]
- Dong, N.; Wang, J. Sub-Nyquist Sampling and Parameters Estimation of Wideband LFM Signals Based on FRFT. Radioelectron. Commun. Syst. 2018, 61, 333–341. [Google Scholar] [CrossRef]
- Abdelouahhab, M.; Manar, S.; Benhida, R. Optimization of the Reaction Temperature During Phosphoric Acid Production Using Fibonacci Numbers and Golden Section Methods. Chem. Afr. 2024, 7, 4017–4029. [Google Scholar] [CrossRef]
- Yuan, F.-C.; Lee, C.-H.; Chiu, C. Using Market Sentiment Analysis and Genetic Algorithm-Based Least Squares Support Vector Regression to Predict Gold Prices. Int. J. Comput. Intell. Syst. 2020, 13, 234–246. [Google Scholar] [CrossRef]
- Shrivastava, A.; Dalla, V.K. Multi-Segment Trajectory Tracking of the Redundant Space Robot for Smooth Motion Planning Based on Interpolation of Linear Polynomials with Parabolic Blend. Proc. Inst. Mech. Eng. Part C 2022, 236, 9255–9269. [Google Scholar] [CrossRef]
- Gorges, C.; Evrard, F.; van Wachem, B.; Denner, F. Reducing Volume and Shape Errors in Front Tracking by Divergence-Preserving Velocity Interpolation and Parabolic Fit Vertex Positioning. J. Comput. Phys. 2022, 457, 111072. [Google Scholar] [CrossRef]
- Muhammadsharif, F.F.; Hashim, S.; Hameed, S.S.; Ghoshal, S.K.; Abdullah, I.K.; Macdonald, J.E.; Yahya, M.Y. Brent’s Algorithm Based New Computational Approach for Accurate Determination of Single-Diode Model Parameters to Simulate Solar Cells and Modules. Sol. Energy 2019, 193, 782–798. [Google Scholar] [CrossRef]
- Xu, L.; Moncorgé, A.; Nichita, D.V. Efficient Nested Three-Phase Isenthalpic Flash Calculations with a Hybrid Newton and Brent Algorithm for Water-CO2-Hydrocarbon Mixtures in CO2 Storage Simulations. Chem. Eng. Sci. 2025, 308, 121379. [Google Scholar] [CrossRef]
- Liu, B.; Hao, X. Research on Anti-Frequency Sweeping Jamming Method for Frequency Modulation Continuous Wave Radio Fuze Based on Wavelet Packet Transform Features. Appl. Sci. 2022, 12, 8713. [Google Scholar] [CrossRef]
- Tamazin, M.; Korenberg, M.J.; Elghamrawy, H.; Noureldin, A. GPS Swept Anti-Jamming Technique Based on Fast Orthogonal Search (FOS). Sensors 2021, 21, 3706. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hao, X.; Kong, Z.; Yan, X. Anti-Sweep-Jamming Method Based on the Averaging of Range Side Lobes for Hybrid Modulation Proximity Detectors. IEEE Access 2020, 8, 33479–33488. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, D.-H.; Lee, S.; Kim, W. Frequency Shift Keying-Based Long-Range Underwater Communication for Consecutive Channel Estimation and Compensation Using Chirp Waveform Symbol Signals. J. Mar. Sci. Eng. 2023, 11, 1637. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, Z.; Chen, G.; Zhang, Y.; Chen, J.; Song, H. Real-Time Interference Mitigation for Reliable Target Detection with FMCW Radar in Interference Environments. Remote Sens. 2025, 17, 26. [Google Scholar] [CrossRef]
Search Method | Convergence Threshold | Number of Iterations | Computation Time (ms) | Estimated Order | Relative Error δp (%) |
---|---|---|---|---|---|
Golden Section | 10−3 | 15 | 33.25 | 1.156681 | 0.0275 |
10−2 | 10 | 61.67 | 1.156541 | 0.0397 | |
Parabolic Interpolation | 10−3 | 11 | 13.07 | 1.157055 | 0.0048 |
10−2 | 9 | 13.24 | 1.157817 | 0.0706 | |
Brent Method | 10−3 | 11 | 23.44 | 1.157092 | 0.0080 |
10−2 | 6 | 42.89 | 1.157098 | 0.0085 |
Search Method | Bandwidth | Number of Iterations | Estimated Order |
---|---|---|---|
Golden Section | 3k | 10 | 1.100813 |
6k | 10 | 1.196008 | |
9k | 10 | 1.281153 | |
12k | 10 | 1.358167 | |
Parabolic Interpolation | 3k | 7 | 1.101283 |
6k | 8 | 1.197799 | |
9k | 50 | 1.285511 | |
12k | 50 | 1.000000 | |
Brent Method | 3k | 6 | 1.100711 |
6k | 7 | 1.195048 | |
9k | 6 | 1.281920 | |
12k | 6 | 1.366473 |
Simulation Parameters | Parameter Value |
---|---|
Fuse modulation period | 30 µs |
Fuse bandwidth | 100 MHz |
Target distance | 1000 m |
Interference bandwidth | 130 MHz |
Signal-to-interference ratio (SIR) | −40 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, M.; Su, Y.; Wang, Z.; Lu, K. Research on the Integration of Sensing and Communication Based on Fractional-Order Fourier Transform. Sensors 2025, 25, 2956. https://doi.org/10.3390/s25102956
Qi M, Su Y, Wang Z, Lu K. Research on the Integration of Sensing and Communication Based on Fractional-Order Fourier Transform. Sensors. 2025; 25(10):2956. https://doi.org/10.3390/s25102956
Chicago/Turabian StyleQi, Mingyan, Yuelong Su, Zhaoyi Wang, and Kun Lu. 2025. "Research on the Integration of Sensing and Communication Based on Fractional-Order Fourier Transform" Sensors 25, no. 10: 2956. https://doi.org/10.3390/s25102956
APA StyleQi, M., Su, Y., Wang, Z., & Lu, K. (2025). Research on the Integration of Sensing and Communication Based on Fractional-Order Fourier Transform. Sensors, 25(10), 2956. https://doi.org/10.3390/s25102956