Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Platform
2.2. Measurement Experiment Design
2.3. Data Processing
2.3.1. Preprocessing on Backscattering Measurement Data
2.3.2. Analysis Based on Vertical Energy Profiles
2.3.3. Analysis Based on Side-Looking Backscattering Data
3. Results
3.1. Scattering Characteristics Analysis Based on Vertical Energy Profiles
3.2. Scattering Characteristics Analysis Based on Side-Looking Backscattering Data
3.2.1. Backscattering Energy Intensity in Masson Pine Canopy
3.2.2. Polarization Characteristic Energy Variation in Masson Pine Canopy
4. Discussion
4.1. Analysis of Ground and Canopy Scattering Contribution Based on Vertical Energy Profiles
4.2. Analysis of Branches and Needles Scattering Contributions Based on Vertical Energy Profiles
4.3. Analysis of Energy Variations in Side-Looking Backscatter Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Change 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Chen, L.; Liang, M.; Wang, S. Carbon stock density in planted versus natural Pinus massoniana forests in sub-tropical China. Ann. Forest Sci. 2016, 73, 461–472. [Google Scholar] [CrossRef]
- Li, Z.; Ota, T.; Mizoue, N. Monitoring tropical forest change using tree canopy cover time series obtained from Sentinel-1 and Sentinel-2 data. Int. J. Digit. Earth 2024, 17, 2312222. [Google Scholar] [CrossRef]
- Fang, G.; Yu, H.; Fang, L.; Zheng, X. Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass. Forests 2023, 14, 1615. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Jagdhuber, T.; Moghaddam, M.; Entekhabi, D. Soil and Vegetation Scattering Contributions in L-Band and P-Band Polarimetric SAR Observations. IEEE T. Geosci. Remote. 2019, 57, 8417–8429. [Google Scholar] [CrossRef]
- Zoughi, R.; Wu, L.K.; Moore, R.K. Identification of major backscattering sources in trees and shrubs at 10 GHz. Remote Sens. Environ. 1986, 19, 269–290. [Google Scholar] [CrossRef]
- Pitts, D.E.; Badhwar, G.D.; Reyna, E.; Zoughi, R.; Wu, L.K.; Moore, R.K. Estimation of X-band scattering properties of tree components. IEEE T. Geosci. Remote. 1988, 26, 612–616. [Google Scholar] [CrossRef]
- Hirosawa, H.; Matsuzaka, Y.; Kobayashi, O. Measurement of microwave backscatter from a cypress with and without leaves. IEEE T. Geosci. Remote. 1989, 27, 698–701. [Google Scholar] [CrossRef]
- Zoughi, R.; Bredow, J.; Osman, S.; Moore, R.K. Fine resolution signatures of coniferous and deciduous trees at C band. Int. J. Remote Sens. 1989, 10, 147–169. [Google Scholar] [CrossRef]
- Paris, J.F. Probing Thick Vegetation Canopies with a Field Microwave Scatterometer. IEEE T. Geosci. Remote. 1986, 24, 886–893. [Google Scholar] [CrossRef]
- Lim, Y.X.; Burgin, M.S.; van Zyl, J.J. An Optimal Nonnegative Eigenvalue Decomposition for the Freeman and Durden Three-Component Scattering Model. IEEE T. Geosci. Remote. 2017, 55, 2167–2176. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE T. Geosci. Remote. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Freeman, A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE T. Geosci. Remote. 2007, 45, 2583–2592. [Google Scholar] [CrossRef]
- An, W.; Cui, Y.; Yang, J. Three-Component Model-Based Decomposition for Polarimetric SAR Data. IEEE T. Geosci. Remote. 2010, 48, 2732–2739. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Wang, C.; Liu, X. A Modified Four-Component Decomposition Method with Refined Volume Scattering Models. IEEE J. Stars. 2020, 13, 1946–1958. [Google Scholar] [CrossRef]
- Shao, Y.; Gong, H.; Tian, W.; Zhang, Q.; Wang, G.; Bian, X.; Zhang, T.; Zhang, F.; Li, K.; Liu, Z.; et al. Experiment of measuring targets’ full-parameters microwave properties. Natl. Remote Sens. Bull. 2021, 25, 323–331. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M. Analysis and Estimation of Biophysical Parameters of Vegetation by Radar Polarimetry. Ph.D. Thesis, Universidad Politecnica de Valencia, Valencia, Spain, 2000. Available online: http://www.dfists.ua.es/~juanma/Publis//Publi//phd_lopez-sanchez-eng.html (accessed on 25 November 2024).
- Wiesbeck, W.; Riegger, S. A complete error model for free space polarimetric measurements. IEEE T. Antenn. Propag. 1991, 39, 1105–1111. [Google Scholar] [CrossRef]
- Piermattei, L.; Hollaus, M.; Milenkovic, M.; Pfeifer, N.; Quast, R.; Chen, Y.; Hakala, T.; Karjalainen, M.; Hyyppä, J.; Wagner, W. An Analysis of Ku-Band Profiling Radar Observations of Boreal Forest. Remote Sens. 2017, 9, 1252. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, H.; Long, J.; Zheng, H.; Ye, Z.; Liu, Z. Evaluating the Sensitivity of Polarimetric Features Related to Rotation Domain and Mapping Chinese Fir AGB Using Quad-Polarimetric SAR Images. Remote Sens. 2023, 15, 1519. [Google Scholar] [CrossRef]
- Haldar, D.; Dave, R.; Dave, V.A. Evaluation of full-polarimetric parameters for vegetation monitoring in rabi (winter) season. Egypt. J. Remote Sens. 2018, 21, S63–S73. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hallikainen, M. Applicability of airborne profiling radar to forest inventory. Remote Sens. Environ. 1996, 57, 39–57. [Google Scholar] [CrossRef]
- Martinez, J.M.; Floury, N.; Toan, T.L.; Beaudoin, A.; Hallikainen, M.T.; Makynen, M. Measurements and modeling of vertical backscatter distribution in forest canopy. IEEE T. Geosci. Remote. 2000, 38, 710–719. [Google Scholar] [CrossRef]
- Du, K.; Huang, H.; Zhu, Y.; Feng, Z.; Hakala, T.; Chen, Y.; Hyyppä, J. Simulation of Ku-Band Profile Radar Waveform by Extending Radiosity Applicable to Porous Individual Objects (RAPID2) Model. Remote Sens. 2020, 12, 684. [Google Scholar] [CrossRef]
- Du, K.; Huang, H.; Feng, Z.; Hakala, T.; Chen, Y.; Hyyppä, J. Using Microwave Profile Radar to Estimate Forest Canopy Leaf Area Index: Linking 3D Radiative Transfer Model and Forest Gap Model. Remote Sens. 2021, 13, 297. [Google Scholar] [CrossRef]
- Chen, Y.; Hakala, T.; Karjalainen, M.; Feng, Z.; Tang, J.; Litkey, P.; Kukko, A.; Jaakkola, A.; Hyyppa, J. UAV-Borne Profiling Radar for Forest Research. Remote Sens. 2017, 9, 58. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Jiao, X.; Flores-de-Santiago, F.; Zhang, C.; Flores-Verdugo, F. Assessing relationships between Radarsat-2 C-band and structural parameters of a degraded mangrove forest. Int. J. Remote Sens. 2013, 34, 7002–7019. [Google Scholar] [CrossRef]
- Qin, X.; Zhao, L.; Yang, J.; Li, P.; Zeng, H.; Zhang, M.; Sun, K. Mitigating Incidence Angle Effects in Airborne SAR Time-Series Crop Classification: Integrating Transfer Learning and Variational Mode Decomposition. IEEE J.-Stars. 2024, 17, 14502–14520. [Google Scholar] [CrossRef]
- Dinh, H.T.M.; Thuy, L.T.; Rocca, F.; Tebaldini, S.; Villard, L.; Rejou-Mechain, M.; Phillips, O.L.; Feldpausch, T.R.; Dubois-Fernandez, P.; Scipal, K. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sens. Environ. 2016, 175, 138–147. [Google Scholar] [CrossRef]
- Chang, S.; Deng, Y.; Zhang, Y.; Zhao, Q.; Wang, R.; Zhang, K. An Advanced Scheme for Range Ambiguity Suppression of Spaceborne SAR Based on Blind Source Separation. IEEE T. Geosci. Remote. 2022, 60, 5230112. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Mapping Growing Stem Volume of Chinese Fir Plantation Using a Saturation-based Multivariate Method and Quad-polarimetric SAR Images. Remote Sens. 2019, 11, 1872. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Estimating the Growing Stem Volume of the Planted Forest Using the General Linear Model and Time Series Quad-Polarimetric SAR Images. Sensors 2020, 20, 3957. [Google Scholar] [CrossRef] [PubMed]
Parameter | Measuring Range and Accuracy |
---|---|
Range of incidence angel (°) | 0~90 |
Accuracy of incidence angel (°) | 0.01 |
Rotation range of turntable (°) | 0~360 |
Accuracy of turntable rotation (°) | 0.01 |
Frequency range (GHz) | 0.8~20 |
Signal-to-noise ratio (dB) | −60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, K.; Li, Y.; Huang, H.; Mao, X.; Xiao, X.; Liu, Z. Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement. Sensors 2025, 25, 46. https://doi.org/10.3390/s25010046
Du K, Li Y, Huang H, Mao X, Xiao X, Liu Z. Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement. Sensors. 2025; 25(1):46. https://doi.org/10.3390/s25010046
Chicago/Turabian StyleDu, Kai, Yuan Li, Huaguo Huang, Xufeng Mao, Xiulai Xiao, and Zhiqu Liu. 2025. "Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement" Sensors 25, no. 1: 46. https://doi.org/10.3390/s25010046
APA StyleDu, K., Li, Y., Huang, H., Mao, X., Xiao, X., & Liu, Z. (2025). Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement. Sensors, 25(1), 46. https://doi.org/10.3390/s25010046