Seasonal Land Use and Land Cover Mapping in South American Agricultural Watersheds Using Multisource Remote Sensing: The Case of Cuenca Laguna Merín, Uruguay
Abstract
:1. Introduction
- Map LULC for the austral summer of 2024, categorising it into general and specific classes for the season. General categories include herbaceous (HE), cultivated afforestation (CA), native forests (NF), seasonally flooded vegetation (SFV), water bodies (WA) and built-up areas (BU). Seasonal classes comprise rice paddies (RP), other summer crops (OSC) and bare land (BL).
- Map LULC classes for the austral winter of 2024 using the above-mentioned general categories while incorporating specific classes, such as winter crops (WC) and post-agricultural fields/bare land (PAF).
- Assess and compare the efficacy of random forest (RF), support vector machine (SVM) and gradient boosting tree (GBT) classifiers.
2. The Study Area
3. Materials
3.1. Multisource Database
3.1.1. Sentinel 2: Composites and Derived Indices
- -
- High vegetative growth and fully mature rice paddies for summer mapping. The suitable acquisition dates were February 1 and March 7.
- -
- Crops in medium to high growth stages for winter mapping. Additionally, it aims to detect recent post-agricultural fields after summer. The suitable acquisition dates were July 25 and August 14.
3.1.2. Sentinel 1 Composites
3.1.3. Shuttle Radar Topography Mission Digital Elevation Dataset
3.1.4. Layer Stacking
3.2. Class Description-Training and Validation Datasets
3.3. Informatics Resources
3.3.1. Software
3.3.2. Classifiers
4. Methods
4.1. Sampling
4.2. Feature Importance Analysis
4.3. Hyperparameter Tuning and Model Creation
4.4. Supervised Classification
4.5. Accuracy Assessment
5. Results and Discussion
5.1. Model Creation
5.2. The Importance of Optical and Microwave Features
5.3. Map Production, Surface Calculation and a Comparison Between Classification Performance
- RF demonstrates reliable performance across most classes, striking an effective balance between UA and PA. It excels in WA, where it achieves a UA of 1.00 and a PA of 0.96, indicating ideal precision and few omission errors. Similarly, RF performs HE and RP well, showing near-identical UA (~0.95) and PA (~0.96), reflecting its ability to classify these groups accurately with minimal confusion. For CA, RF attains excellent PA, with only minor misclassifications (UA = 0.93). It also performs robustly in NF, achieving a UA of 0.90 and a PA of 0.96, although slight misclassifications lessen precision. RF maintains high accuracies for BL and BU, with UA = 1.00 and PA = 0.96 for BL, as well as UA = 0.92 and PA = 0.89 for BU. However, RF struggles with SFV, whereas PA drops significantly to 0.54, indicating that many actual SFV pixels are missed. A UA of 0.88 displays moderate precision. Despite its challenges with more complex classes, such as SFV, RF remains a strong and reliable classifier for most categories.
- SVM exhibits mixed performance, achieving a high PA for several classes but often struggling with UA due to misclassification errors. SVM performs well in WA, achieving a PA of 0.99 and a UA of 0.97, which means that almost all water pixels are correctly classified, with only minor mislabelling of other classes as water. For NF and BU, SVM achieves very high PA values (0.98 and 0.97, respectively), indicating its ability to correctly identify most actual forest and built-up pixels. However, the UA of 0.88 for NF and 0.80 for BU reveal overclassification issues, whereas other classes are incorrectly labelled as these categories. In HE, SVM struggles more, with a UA of 0.91 and a PA of 0.86, reflecting both omission and commission errors. RP shows a similar imbalance, with a UA of 0.96 but a lower PA of 0.86, meaning that many actual RP pixels are missed. SVM performs the weakest for classes such as OSC and SFV, where both UA and PA values are relatively low (OSC: UA = 0.77, PA = 0.82; SFV: UA = 0.71, PA = 0.64), indicating significant confusion between these and other classes. While SVM excels at detecting certain classes, its overclassification tendency and struggles with complex categories reduce its overall performance.
- GBT is the most balanced and consistent, delivering high accuracy across nearly all classes. It performs well for WA, achieving a UA of 1.00 and a producer accuracy (PA) of 0.92. GBT slightly outperforms RF in HE and CA, achieving a UA of 0.97 and a PA of 0.96 for HE, while maintaining an ideal PA of 1.00 for CA and a high UA of 0.94. For NF, GBT delivers a UA of 0.91 and a PA of 0.96, matching RF in overall reliability and reducing misclassification errors compared to SVM. Notably, GBT exhibits superior performance for classes such as OSC and SFV. OSC achieves a balanced UA of 0.89 and a PA of 0.90. In the case of SFV, GBT outperforms both RF and SVM, with a UA of 0.83 and a PA of 0.65, demonstrating its ability to minimise confusion with similar classes. Additionally, GBT maintains high performance for BU and BL, achieving a UA of 0.92 and a PA of 0.89 for BU as well as a UA of 0.97 and a PA of 0.97 for BL. GBT’s ability to deliver consistently high UA and PA across most classes and its superior performance in handling complex categories, such as SFV, make it the most effective and reliable classifier for summer mapping.
- RF demonstrated strong and reliable performance across most classes, achieving high UA and PA. Notably, RF performs well in WA. In the NF category, it achieved an ideal UA of 0.97 and a PA of 0.98. CA also reflects strong performance, with a UA of 0.91 and a PA of 0.98. RF’s performance in the HE class is moderate, with a UA of 0.79 and a PA of 0.83. Similarly, RF achieves solid but imperfect accuracy for PAF, reaching a UA of 0.84 and a PA of 0.85, indicating a balance between omission and commission errors. For the WC class, RF delivers a UA of 0.89 and a PA of 0.81, performing well in precision but with some underestimation. RF excels in the SFV category, attaining a UA of 0.97 and a moderate PA of 0.78, suggesting high precision but slight underdetection. Lastly, RF achieved excellent results in the BU class, with a UA of 1.00 and a high PA of 0.90.
- SVM delivers variable performance across classes, showing strengths in some categories while facing challenges with UA or PA in others. For WA, SVM achieves an excellent PA of 1.00 but a notably lower UA of 0.69, indicating overclassification. SVM performs well in NF, achieving a UA = 0.98 and a PA = 0.96. In the CA class, SVM achieved an excellent PA of 1.00 and a high UA of 0.94. However, SVM struggles slightly in HE, where it records a UA of 0.86 and a PA of 0.81, indicating a moderate balance between omission and commission errors that is not as consistent as RF. Similarly, SVM achieves balanced performance for PAF with UA = 0.85 and PA = 0.87, showing reliable classification. For the WC class, SVM performed slightly weaker, with UA = 0.85 and PA = 0.78, indicating challenges in identifying all actual WC pixels. In the SFV class, SVM achieved a UA of 0.86 and a PA of 0.78, reflecting moderate performance but lower precision than RF and GBT. Finally, in the BU class, SVM attained a perfect UA of 1.00 and a PA of 0.90, matching RF’s high performance.
- GBT consistently delivers strong, balanced performance across most classes, often matching or slightly outperforming RF and SVM. GBT obtained a PA of 1.00 and a UA of 0.92 for WA, showing slight commission errors vs. RF. GBT excels at NF. In CA, GBT achieves a strong UA (0.97) and PA (0.98), slightly outperforming RF and approaching SVM’s robust PA. For HE, GBT displays a balanced performance, with a UA of 0.82 and a PA of 0.84, surpassing RF but slightly trailing SVM in precision. GBT reliably performs PAF with a UA of 0.85 and a PA of 0.86, matching SVM’s accuracy while maintaining balance. In WC, GBT delivers a UA of 0.83 and a PA of 0.84, showing slightly weaker results than RF but remaining consistent with SVM. Notably, GBT outperforms both RF and SVM in SFV, attaining a UA of 1.00 and a PA of 0.80, indicating a superior ability to minimise misclassification errors while accurately identifying most SFV pixels. Finally, for BU, GBT achieves a UA of 1.00 and a PA of 0.90, matching RF’s and SVM’s performance. Accordingly, GBT emerges as the most effective classifier for winter mapping, while RF remains competitive but illustrates slight weaknesses in complex classes. SVM performs well overall but demonstrates variable precision, particularly for classes that are prone to misclassification.
5.4. Seasonal Changes in Land Use/Land Cover: Overview of Opportunities, Limitations and Prospects
5.5. Potential Applications of Seasonal LULC Maps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SummRF | ||||||||||
CLASS | WA | HE | NF | CA | RP | OSC | BL | SFV | BU | Total |
WA | 136 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 142 |
HE | 0 | 1088 | 0 | 0 | 16 | 32 | 0 | 0 | 0 | 1136 |
NF | 0 | 0 | 780 | 31 | 0 | 0 | 0 | 1 | 0 | 812 |
CA | 0 | 0 | 0 | 575 | 0 | 0 | 0 | 1 | 0 | 576 |
RP | 0 | 0 | 0 | 7 | 556 | 16 | 0 | 0 | 0 | 579 |
OSC | 0 | 27 | 1 | 0 | 16 | 581 | 0 | 15 | 0 | 640 |
BL | 0 | 7 | 0 | 0 | 0 | 0 | 246 | 0 | 3 | 256 |
SFV | 0 | 19 | 81 | 3 | 0 | 0 | 0 | 119 | 0 | 222 |
BU | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 37 |
Total | 136 | 1151 | 862 | 616 | 588 | 629 | 246 | 136 | 36 | 4400 |
SummSVM | ||||||||||
CLASS | WA | HE | NF | CA | RP | OSC | BL | SFV | BU | Total |
WA | 141 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 142 |
HE | 2 | 981 | 16 | 0 | 0 | 114 | 0 | 23 | 0 | 1136 |
NF | 0 | 1 | 792 | 17 | 0 | 0 | 0 | 2 | 0 | 812 |
CA | 0 | 17 | 3 | 556 | 0 | 0 | 0 | 0 | 0 | 576 |
RP | 0 | 0 | 2 | 4 | 496 | 46 | 0 | 31 | 0 | 579 |
OSC | 0 | 72 | 23 | 14 | 3 | 528 | 0 | 0 | 0 | 640 |
BL | 0 | 2 | 0 | 0 | 0 | 0 | 245 | 0 | 9 | 256 |
SFV | 3 | 1 | 60 | 0 | 15 | 0 | 0 | 143 | 0 | 222 |
BU | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 37 |
Total | 146 | 1075 | 896 | 591 | 514 | 688 | 245 | 200 | 45 | 4400 |
SummGBT | ||||||||||
CLASS | WA | HE | NF | CA | RP | OSC | BL | SFV | BU | Total |
WA | 130 | 4 | 0 | 0 | 1 | 0 | 7 | 0 | 0 | 142 |
HE | 0 | 1087 | 0 | 0 | 16 | 33 | 0 | 0 | 0 | 1136 |
NF | 0 | 0 | 777 | 32 | 0 | 0 | 0 | 3 | 0 | 812 |
CA | 0 | 0 | 0 | 575 | 0 | 0 | 0 | 1 | 0 | 576 |
RP | 0 | 0 | 0 | 2 | 551 | 16 | 0 | 10 | 0 | 579 |
OSC | 0 | 25 | 13 | 1 | 12 | 574 | 0 | 15 | 0 | 640 |
BL | 0 | 5 | 0 | 0 | 0 | 0 | 248 | 0 | 3 | 256 |
SFV | 0 | 0 | 62 | 0 | 0 | 16 | 0 | 144 | 0 | 222 |
BU | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 33 | 37 |
Total | 130 | 1121 | 852 | 610 | 580 | 643 | 255 | 173 | 36 | 4400 |
WinRF | |||||||||
WA | HE | NF | CA | PAF | WC | SFV | BU | Total | |
WA | 196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 196 |
HE | 0 | 1016 | 13 | 0 | 170 | 26 | 5 | 0 | 1230 |
NF | 0 | 0 | 801 | 0 | 15 | 2 | 0 | 0 | 818 |
CA | 0 | 0 | 7 | 487 | 0 | 0 | 3 | 0 | 497 |
PAF | 0 | 242 | 0 | 0 | 1563 | 30 | 0 | 0 | 1835 |
WC | 0 | 20 | 7 | 0 | 85 | 480 | 0 | 0 | 592 |
SFV | 0 | 1 | 1 | 49 | 30 | 0 | 290 | 0 | 371 |
BU | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 57 | 63 |
TOTAL | 196 | 1279 | 829 | 536 | 1869 | 538 | 298 | 57 | 5602 |
WinSVM | |||||||||
WA | HE | NF | CA | PAF | WC | SFV | BU | Total | |
WA | 196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 196 |
HE | 0 | 1000 | 2 | 0 | 197 | 17 | 14 | 0 | 1230 |
NF | 0 | 1 | 784 | 0 | 9 | 6 | 18 | 0 | 818 |
CA | 0 | 0 | 0 | 497 | 0 | 0 | 0 | 0 | 497 |
PAF | 86 | 97 | 0 | 0 | 1602 | 37 | 13 | 0 | 1835 |
WC | 0 | 64 | 0 | 0 | 66 | 461 | 1 | 0 | 592 |
SFV | 3 | 2 | 17 | 30 | 10 | 20 | 289 | 0 | 371 |
BU | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 57 | 63 |
TOTAL | 285 | 1164 | 803 | 527 | 1890 | 541 | 335 | 57 | 5602 |
WinGBT | |||||||||
WA | HE | NF | CA | PAF | WC | SFV | BU | Total | |
WA | 196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 196 |
HE | 0 | 1034 | 9 | 0 | 153 | 33 | 1 | 0 | 1230 |
NF | 0 | 0 | 794 | 0 | 16 | 8 | 0 | 0 | 818 |
CA | 0 | 0 | 9 | 486 | 0 | 2 | 0 | 0 | 497 |
PAF | 4 | 221 | 1 | 0 | 1575 | 34 | 0 | 0 | 1835 |
WC | 0 | 3 | 0 | 0 | 90 | 499 | 0 | 0 | 592 |
SFV | 12 | 9 | 0 | 16 | 15 | 24 | 295 | 0 | 371 |
BU | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 57 | 63 |
TOTAL | 212 | 1267 | 813 | 502 | 1855 | 600 | 296 | 57 | 5602 |
Class | SummRF | SummSVM | SummGBT | |||
UA | PA | UA | PA | UA | PA | |
WA | 1 | 0.96 | 0.97 | 0.99 | 1 | 0.92 |
HE | 0.95 | 0.96 | 0.91 | 0.86 | 0.97 | 0.96 |
NF | 0.90 | 0.96 | 0.88 | 0.98 | 0.91 | 0.96 |
CA | 0.93 | 1 | 0.94 | 0.97 | 0.94 | 1 |
RP | 0.95 | 0.96 | 0.96 | 0.86 | 0.95 | 0.95 |
OSC | 0.92 | 0.91 | 0.77 | 0.82 | 0.89 | 0.90 |
BL | 1 | 0.96 | 1 | 0.96 | 0.97 | 0.97 |
SFV | 0.88 | 0.54 | 0.71 | 0.64 | 0.83 | 0.65 |
BU | 0.92 | 0.89 | 0.80 | 0.97 | 0.92 | 0.89 |
Class | WinRF | WinSVM | WinGBT | |||
UA | PA | UA | PA | UA | PA | |
WA | 1 | 1 | 0.69 | 1 | 0.92 | 1 |
HE | 0.79 | 0.83 | 0.86 | 0.81 | 0.82 | 0.84 |
NF | 0.97 | 0.98 | 0.98 | 0.96 | 0.98 | 0.97 |
CA | 0.91 | 0.98 | 0.94 | 1 | 0.97 | 0.98 |
PAF | 0.84 | 0.85 | 0.85 | 0.87 | 0.85 | 0.86 |
WC | 0.89 | 0.81 | 0.85 | 0.78 | 0.83 | 0.84 |
SFV | 0.97 | 0.78 | 0.86 | 0.78 | 1 | 0.80 |
BU | 1 | 0.90 | 1 | 0.90 | 1 | 0.90 |
References
- Peytavin, L.; Dansaert, F.; Rhin, C. Multisources Classification: Application to Temporal Refinement of Forest Cover Using SPOT and ERS/SAR Data. In Proceedings of the Image and Signal Processing for Remote Sensing II, Paris, France, 17 November 1995. [Google Scholar]
- Smara, Y.; Belhadj-Aissa, A.; Sansal, B.; Lichtenegger, J.; Bouzenoune, A. Multisource ERS-1 and Optical Data for Vegetal Cover Assessment and Monitoring in a Semi-Arid Region of Algeria. Int. J. Remote Sens. 1998, 19, 3551–3568. [Google Scholar] [CrossRef]
- Tso, B.; Mather, P. Classification of Multisource Remote Sensing Imagery Using a Genetic Algorithm and Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1255–1260. [Google Scholar] [CrossRef]
- Kuplich, T.; Freitas, C.; Soares, J. The Study of ERS-1 SAR and Landsat TM Synergism for Land Use Classification. Int. J. Remote Sens. 2000, 21, 2101–2111. [Google Scholar] [CrossRef]
- Price, K.; Guo, X.; Stiles, J. Comparison of Landsat TM and ERS-2 SAR Data for Discriminating among Grassland Types and Treatments in Eastern Kansas. Comput. Electron. Agric. 2002, 37, 157–171. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, P.; Ban, Y.; Rahnemoonfar, M. GAN-Based SAR and Optical Image Translation for Wildfire Impact Assessment Using Multi-Source Remote Sensing Data. Remote Sens. Environ. 2023, 289, 113522. [Google Scholar] [CrossRef]
- Zhong, W.; Mei, X.; Niu, F.; Fan, X.; Ou, S.; Zhong, S. Fusing Social Media, Remote Sensing, and Fire Dynamics to Track Wildland-Urban Interface Fire. Remote Sens. 2023, 15, 3842. [Google Scholar] [CrossRef]
- Xiao, Y.; Ke, C.; Cai, Y.; Shen, X.; Wang, Z.; Nourani, V.; Lhakpa, D. Glacier Retreating Analysis on the Southeastern Tibetan Plateau via Multisource Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2035–2049. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, C.; Zhu, Y.; Wang, T.; Zhang, C. Monitoring of Supraglacial Lake Distribution and Full-Year Changes Using Multisource Time-Series Satellite Imagery. Remote Sens. 2023, 15, 5726. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, P.; Liu, Y.; Wang, X.; Chen, Q. A Glacial Lake Mapping Framework in High Mountain Areas: A Case Study of the Southeastern Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Hamidi, E.; Peter, B.; Muñoz, D.; Moftakhari, H.; Moradkhani, H. Fast Flood Extent Monitoring with SAR Change Detection Using Google Earth Engine. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–19. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, D.; Wang, S.; Xiang, H.; Zhang, W. Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sens. 2022, 14, 5771. [Google Scholar] [CrossRef]
- Feng, H.; Wu, Z.; Dong, J.; Zhou, J.; Brocca, L.; He, H. Transpiration–Soil Evaporation Partitioning Determines Inter-Model Differences in Soil Moisture and Evapotranspiration Coupling. Remote Sens. Environ. 2023, 298, 113841. [Google Scholar] [CrossRef]
- Mao, K.; Wang, H.; Shi, J.; Heggy, E.; Wu, S.; Bateni, S.; Du, G. A General Paradigm for Retrieving Soil Moisture and Surface Temperature from Passive Microwave Remote Sensing Data Based on Artificial Intelligence. Remote Sens. 2023, 15, 1793. [Google Scholar] [CrossRef]
- Cao, S.; Wang, Y.; He, G.; Shen, P.; He, Y.; Wu, Y. Radar Characteristics and Causal Analysis of Two Consecutive Tornado Events Associated with Heavy Precipitation during the Mei-Yu Season. Remote Sens. 2023, 15, 5470. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Jiang, Q.; Ren, X.; He, H.; Tang, Y.; Dong, X.; Sun, Y.; Dickerson, R. Comparative Analysis of Aerosol Vertical Characteristics over the North China Plain Based on Multi-Source Observation Data. Remote Sens. 2024, 16, 609. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, K.; Chuai, G.; Gao, W.; Si, Z.; Hou, Y.; Liu, X. Urban Area Characterization and Structure Analysis: A Combined Data-Driven Approach by Remote Sensing Information and Spatial–Temporal Wireless Data. Remote Sens. 2023, 15, 1041. [Google Scholar] [CrossRef]
- Hong, F.; He, G.; Wang, G.; Zhang, Z.; Peng, Y. Monitoring of Land Cover and Vegetation Changes in Juhugeng Coal Mining Area Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 3439. [Google Scholar] [CrossRef]
- Cubaud, M.; Le Bris, A.; Jolivet, L.; Olteanu-Raimond, A. Assessing the Transferability of a Multi-Source Land Use Classification Workflow across Two Heterogeneous Urban and Rural Areas. Int. J. Digit. Earth 2024, 17, 1. [Google Scholar] [CrossRef]
- Li, R.; Gao, X.; Shi, F.; Zhang, H. Scale Effect of Land Cover Classification from Multi-Resolution Satellite Remote Sensing Data. Sensors 2023, 23, 6136. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Dhanjal-Adams, K.; Silvestro, D. Integrating Machine Learning, Remote Sensing and Citizen Science to Create an Early Warning System for Biodiversity. Plants People Planet 2023, 5, 307–316. [Google Scholar] [CrossRef]
- Abdelkader, M.; Bravo Mendez, J.; Temimi, M.; Brown, D.; Spellman, K.; Arp, C.; Bondurant, A.; Kohl, H. A Google Earth Engine Platform to Integrate Multi-Satellite and Citizen Science Data for the Monitoring of River Ice Dynamics. Remote Sens. 2024, 16, 1368. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using Multi-Source Geospatial Big Data to Identify the Structure of Polycentric Cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Polpanich, O.; Bhatpuria, D.; Santos Santos, T.; Krittasudthacheewa, C. Leveraging Multi-Source Data and Digital Technology to Support the Monitoring of Localized Water Changes in the Mekong Region. Sustainability 2022, 14, 1739. [Google Scholar] [CrossRef]
- Li, C.; Dash, J.; Asamoah, M.; Sheffield, J.; Dzodzomenyo, M.; Gebrechorkos, S.H.; Anghileri, D.; Wright, J. Increased Flooded Area and Exposure in the White Volta River Basin in Western Africa, Identified from Multi-Source Remote Sensing Data. Sci. Rep. 2022, 12, 3701. [Google Scholar] [CrossRef] [PubMed]
- Di, L. Remote Sensing Big Data, 1st ed.; Springer Remote Sensing/Photogrammetry Series; Springer International Publishing AG: Cham, Swizerland, 2023; ISBN 9783031339325. [Google Scholar]
- Alciaturi, G.; García-Rodríguez, M.; Fernández, V. A way for explaining Geo Big Data through its characteristics, sources, and central support technologies. Rev. Geogr. Chile Terra Australis 2024, 60, 102–119. [Google Scholar] [CrossRef]
- He, S.; Shao, H.; Xian, W.; Yin, Z.; You, M.; Zhong, J.; Qi, J. Monitoring Cropland Abandonment in Hilly Areas with Sentinel-1 and Sentinel-2 Timeseries. Remote Sens. 2022, 14, 3806. [Google Scholar] [CrossRef]
- Khemiri, L.; Sammali, H.; Katlane, R.; Khelil, M.; Ghanmi, M. Multi-Temporal and Multi-Sensor Approach for Land Use Mapping: Application to Irrigated Crops in the Lower Mejerda Valley (Northeast Tunisia). Euro-Mediterr. J. Environ. Integr. 2024. [Google Scholar] [CrossRef]
- Lv, S.; Xia, X.; Chen, Q.; Pan, Y. Quality Evaluation of Multi-Source Cropland Data in Alpine Agricultural Areas of the Qinghai-Tibet Plateau. Remote Sens. 2024, 16, 3611. [Google Scholar] [CrossRef]
- Li, W. Mapping Urban Land Use by Combining Multi-Source Social Sensing Data and Remote Sensing Images. Earth Sci Inform. 2021, 14, 1537–1545. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Liang, D.; Wang, Y.; Li, J.; Wang, L. Semantic Segmentation of Land Cover in Urban Areas by Fusing Multisource Satellite Image Time Series. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Lu, H.; Wang, R.; Ye, R.; Fan, J. Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China. Land 2023, 12, 144. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Q.; Ma, Y.; Yang, Q.; Shi, P.; Zhang, S.; Tan, Y.; Xi, J.; Zhang, Y.; Liu, B.; et al. Object-Based Multigrained Cascade Forest Method for Wetland Classification Using Sentinel-2 and Radarsat-2 Imagery. Water 2022, 14, 82. [Google Scholar] [CrossRef]
- Amoakoh, A.; Aplin, P.; Rodríguez-Veiga, P.; Moses, C.; Alonso, C.; Cortés, J.; Delgado-Fernandez, I.; Kankam, S.; Mensah, J.; Nortey, D. Predictive Modelling of Land Cover Changes in the Greater Amanzule Peatlands Using Multi-Source Remote Sensing and Machine Learning Techniques. Remote Sens. 2024, 16, 4013. [Google Scholar] [CrossRef]
- Lu, H.; Li, W.; Xu, Q.; Yu, W.; Zhou, S.; Li, Z.; Zhan, W.; Li, W.; Xu, S.; Zhang, P.; et al. Active Landslide Detection Using Integrated Remote Sensing Technologies for a Wide Region and Multiple Stages: A Case Study in Southwestern China. Sci. Total Environ. 2024, 931, 172709. [Google Scholar] [CrossRef]
- Cui, Y.; Guan, C.; Chen, C.; Zheng, J.; Li, S. Sensitivity Assessment of Geological Hazards in Liaoning Province Based on Multisource Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10407–10421. [Google Scholar] [CrossRef]
- Maung, W.; Tsuyuki, S.; Guo, Z. Improving Land Use and Land Cover Information of Wunbaik Mangrove Area in Myanmar Using U-Net Model with Multisource Remote Sensing Datasets. Remote Sens. 2024, 16, 76. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, W.; Chen, A.; Xu, C.; Guo, J.; Xing, X.; Yang, X. Two-Tier Classification Framework for Mapping Grassland Types Using Multisource Earth Observation Data. GISci. Remote Sens. 2024, 61, 2385170. [Google Scholar] [CrossRef]
- Islam, M.; Di, L.; Zhang, C.; Yang, R.; Qu, J.; Tong, D.; Pandey, A. A Decision Rule and Machine Learning-Based Hybrid Approach for Automated Land-Cover Type Local Climate Zones (LCZs) Mapping Using Multi-Source Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8271–8290. [Google Scholar] [CrossRef]
- Ramadhani, F.; Surmaini, E.; Dariah, A.; Apriyana, Y.; Estiningtyas, W.; Susanti, E.; Nurjaya, N. Multisource Spatiotemporal Analysis of Cropping Patterns on Dry Upland: A Case Study in Rubaru Sub-District, Sumenep Regency. Egypt. J. Remote Sens. Space Sci. 2024, 27, 403–415. [Google Scholar] [CrossRef]
- Danoedoro, P.; Widayani, P.; Hidayati, I.N.; Kartika, C.; Alfani, F. Incorporating Landscape Ecological Approach in Machine Learning Classification for Agricultural Land-Use Mapping Based on a Single Date Imagery. Geocarto Int. 2024, 39, 2356844. [Google Scholar] [CrossRef]
- Isoaho, A.; Ikkala, L.; Päkkilä, L.; Marttila, H.; Kareksela, S.; Räsänen, A. Multi-Sensor Satellite Imagery Reveals Spatiotemporal Changes in Peatland Water Table After Restoration. Remote Sens. Environ. 2024, 306, 114144. [Google Scholar] [CrossRef]
- Radočaj, D.; Obhođaš, J.; Jurišić, M.; Gašparović, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y.; Gong, P. An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. [Google Scholar] [CrossRef]
- Arpitha, M.; Ahmed, S.; Harishnaika, N. Land Use and Land Cover Classification Using Machine Learning Algorithms in Google Earth Engine. Earth Sci. Inform. 2023, 16, 3057–3073. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Handbook on Remote Sensing for Agricultural Statistics. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/dcadd248-cccb-43ad-9e3c-7aa0cf2bb577/content (accessed on 29 July 2024).
- Khan, A.; Govil, H.; Kumar, G.; Kaur, R.; Chhabra, M. Synergistic Use of Sentinel-1 and Sentinel-2 for Improved LULC Mapping with Special Reference to Bad Land Class: A Case Study for Yamuna River Floodplain, India. Spat. Inf. Res. 2020, 28, 669–681. [Google Scholar] [CrossRef]
- Ibrahim, S. Improving Land Use/Cover Classification Accuracy from Random Forest Feature Importance Selection Based on Synergistic Use of Sentinel Data and Digital Elevation Model in Agriculturally Dominated Landscape. Agriculture 2023, 13, 98. [Google Scholar] [CrossRef]
- Carvalho Alves, M.; Sanches, L.; Silva de Menezes, F.; Carvalhaes, N.; Oliveira, M.; Candido dos Santos, L. Multisensor Analysis for Environmental Targets Identification in the Region of Funil Dam, State of Minas Gerais, Brazil. Appl. Geomat. 2023, 15, 807–827. [Google Scholar] [CrossRef]
- Eisfelder, C.; Boemke, B.; Gessner, U.; Sogno, P.; Alemu, G.; Hailu, R.; Mesmer, C.; Huth, J. Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine for Agricultural Monitoring in Ethiopia. Remote Sens. 2024, 16, 866. [Google Scholar] [CrossRef]
- Cherif, E.; Hell, M.; Brandmeier, M. DeepForest: Novel Deep Learning Models for Land Use and Land Cover Classification Using Multi-Temporal and -Modal Sentinel Data of the Amazon Basin. Remote Sens. 2022, 14, 5000. [Google Scholar] [CrossRef]
- Wenger, R.; Puissant, A.; Weber, J.; Idoumghar, L.; Forestier, G. Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset. Remote Sens. 2023, 15, 151. [Google Scholar] [CrossRef]
- Tzepkenlis, A.; Marthoglou, K.; Grammalidis, N. Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery. Remote Sens. 2023, 15, 2027. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Hu, L.; Zhao, Y.; Huang, H.; Gong, P. Seasonal Land Cover Dynamics in Beijing Derived from Landsat 8 Data Using a Spatio-Temporal Contextual Approach. Remote Sens. 2015, 7, 865–881. [Google Scholar] [CrossRef]
- Xi, W.; Du, S.; Du, S.; Zhang, X.; Gu, H. Intra-annual land cover mapping and dynamics analysis with dense satellite image time series: A spatiotemporal cube based spatiotemporal contextual method. GIScience Remote Sens. 2021, 58, 1195–1218. [Google Scholar] [CrossRef]
- Chowdhury, M. GIS Based Method for Mapping Actual LULC by Combining Seasonal LULCs. MethodsX 2023, 11, 102472. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Su, R.; Luo, Y.; Jiang, Y.; Wang, Y.; Hu, R.; Lin, S. Effects of Land Cover Patterns on Pond Water Nitrogen and Phosphorus Concentrations in a Small Agricultural Watershed in Central China. Catena 2024, 237, 107800. [Google Scholar] [CrossRef]
- Kadave, K.; Kumari, N. Assessment of Seasonal Water Quality and Land Use Land Cover Change in Subarnarekha Watershed of Ranchi Stretch in Jharkhand. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Pandey, S.; Kumari, N.; Al Nawajish, S. Land Use Land Cover (LULC) and Surface Water Quality Assessment in and around Selected Dams of Jharkhand Using Water Quality Index (WQI) and Geographic Information System (GIS). J. Geol. Soc. India 2023, 99, 205–218. [Google Scholar] [CrossRef]
- Mishra, A.; Arya, D. Assessment of Land-Use Land-Cover Dynamics and Urban Heat Island Effect of Dehradun City, North India: A Remote Sensing Approach. Environ. Dev. Sustain. 2023, 26, 22421–22447. [Google Scholar] [CrossRef]
- Yuan, S.; Ren, Z.; Shan, X.; Deng, Q.; Zhou, Z. Seasonal Different Effects of Land Cover on Urban Heat Island in Wuhan’s Metropolitan Area. Urban Clim. 2023, 49, 101547. [Google Scholar] [CrossRef]
- Mohiuddin, G.; Mund, J. Spatiotemporal Analysis of Land Surface Temperature in Response to Land Use and Land Cover Changes: A Remote Sensing Approach. Remote Sens. 2024, 16, 1286. [Google Scholar] [CrossRef]
- Romillac, N.; Slezack-Deschaumes, S.; Amiaud, B.; Piutti, S. Soil Microbial Communities Involved in Proteolysis and Sulfate-Ester Hydrolysis Are More Influenced by Interannual Variability than by Crop Sequence. Agronomy 2023, 13, 180. [Google Scholar] [CrossRef]
- Ligrone, A.; Alvarez, M.; Jorge-Escudero, G.; Piñeiro, G. Seasonal Dynamics of Agricultural Land Use Impacts on Earthworm Communities: Insights into Diversity, Abundance, and Functional Composition. Eur. J. Soil Biol. 2024, 120, 103588. [Google Scholar] [CrossRef]
- Susanti, W.; Krashevska, V.; Widyastuti, R.; Stiegler, C.; Gunawan, D.; Scheu, S.; Potapov, A. Seasonal fluctuations of litter and soil Collembola and their drivers in rainforest and plantation systems. PeerJ 2024, 12, e17125. [Google Scholar] [CrossRef] [PubMed]
- Munjonji, L.; Ntuli, I.; Ayisi, K.; Dlamini, P.; Mabitsela, K.; Lehutjo, C.; Zwane, P. Seasonal dynamics of soil CO2 emissions from different semi-arid land-use systems. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2024, 74, 1–11. [Google Scholar] [CrossRef]
- Pathakoti, M.; Mahalakshmi, D.; Gaddamidi, S.; Arun, S.; Bothale, R.; Chauhan, P.; Raja, P.; Rajan, K.S.; Chandra, N. Three-dimensional view of CO2 variability in the atmosphere over the Indian region. Atmos. Res. 2023, 290, 106785. [Google Scholar] [CrossRef]
- Downs, J.; Chakraborty, S.; Beeman, S.; Loraamm, R.; Miley, K.; Unnasch, T. Effects of land use/land cover, bioclimatic, and topographic variables on the seasonal occurrence of eastern equine encephalitis virus in Florida. J. Land Use Sci. 2024, 19, 24–35. [Google Scholar] [CrossRef]
- Shilereyo, M.; Magige, F.; Ogutu, J.; Røskaft, E. Small-mammal abundance and species diversity: Land use and seasonal influences in the Serengeti Ecosystem, Tanzania. Front. Conserv. Sci. 2023, 4, 981424. [Google Scholar] [CrossRef]
- Hagos, F.; Yemane, T.; Ibrahim, K.M.; Mangiacotti, M.; Sacchi, R. Combined Effects of Clime, Vegetation, Human-Related Land Use and Livestock on the Distribution of the Three Indigenous Species of Gazelle in Eritrea. Animals 2023, 13, 1490. [Google Scholar] [CrossRef] [PubMed]
- Cloete, D.; Shoko, C.; Dube, T.; Clarke, S. Remote sensing-based land use land cover classification for the Heuningnes Catchment, Cape Agulhas, South Africa. Phys. Chem. Earth Parts A/B/C 2024, 134, 103559. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of Crop Types and Crop Sequences with Combined Time Series of Sentinel-1, Sentinel-2 and Landsat 8 Data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Makhamreh, Z.; Hdoush, A.; Ziadat, F.; Al-Bakri, J.; Abu-Khater, N.; Al-Quraan, S.; Rawabdeh, A.; Farhan, I. Detection of Seasonal Land Use Pattern and Irrigated Crops in Drylands Using Multi-Temporal Sentinel Images. Environ. Earth Sci. 2022, 81, 120. [Google Scholar] [CrossRef]
- Zhou, T.; Zhao, M.; Sun, C.; Pan, J. Exploring the Impact of Seasonality on Urban Land-Cover Mapping Using Multi-Season Sentinel-1A and GF-1 WFV Images in a Subtropical Monsoon-Climate Region. ISPRS Int. J. Geo-Inf. 2018, 7, 3. [Google Scholar] [CrossRef]
- Lin, M.; Lin, Y.; Tsai, M.; Chen, Y.; Chen, Y.; Ching, H.; Wang, C. Mapping Land-Use and Land-Cover Changes through the Integration of Satellite and Airborne Remote Sensing Data. Environ. Monit. Assess. 2024, 196, 246. [Google Scholar] [CrossRef] [PubMed]
- Gorgoglione, A.; Gregorio, J.; Ríos, A.; Alonso, J.; Chreties, C.; Fossati, M. Influence of Land Use/Land Cover on Surface-Water Quality of Santa Lucía River, Uruguay. Sustainability 2020, 12, 4692. [Google Scholar] [CrossRef]
- Alcántara, I.; Somma, A.; Chalar, G.; Fabre, A.; Segura, A.; Achkar, M.; García-Rodríguez, F.; Arocena, R.; Aubriot, L.; Baladán, C.; et al. A Reply to “Relevant Factors in the Eutrophication of the Uruguay River and the Río Negro”. Sci. Total Environ. 2022, 818, 151854. [Google Scholar] [CrossRef]
- Mary-Lauyé, A.; González-Bergonzoni, I.; Gobel, N. Baseline Assessment of the Hydrological Network and Land Use in Riparian Buffers of Pampean Streams of Uruguay. Environ. Monit. Assess. 2023, 195, 80. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Castro, A.; Iacobellis, V.; Gioia, A. A Comparison of Linear and Non-Linear Machine Learning Techniques (PCA and SOM) for Characterizing Urban Nutrient Runoff. Sustainability 2021, 13, 2054. [Google Scholar] [CrossRef]
- Barrios, M.; Teixeira de Mello, F. Urbanization Impacts Water Quality and the Use of Microhabitats by Fish in Subtropical Agricultural Streams. Environ. Conserv. 2022, 49, 155–163. [Google Scholar] [CrossRef]
- Arrarte, C.; Scarlato, G. The Laguna Merin Basin of Uruguay: From Protecting Natural Heritage to Managing Sustainable Development. In Cultivating Peace: Conflict and Collaboration in Natural Resource Management; The International Development Centre: Washington, DC, USA, 1999; pp. 237–250. [Google Scholar]
- Filipini, J. Sustentabilidade Socioambiental da Bacia da Lagoa Mirim; Ministério da Agricultura, Pecuária e Abastecimento: Pelotas, Brasil, 2010; p. 291.
- Soutullo, A.; Bartesaghi, L.; Achkar, M.; Blum, A.; Brazeiro, A.; Ceroni, M.; Gutiérrez, O.; Panario, D.; Rodríguez-Gallego, L. Evaluación y Mapeo de Servicios Ecosistémicos de Uruguay. Available online: https://vidasilvestre.org.uy/wp-content/uploads/2012/05/Servicios-ecosistemicos.pdf (accessed on 26 May 2023).
- Junk, W.; An, S.; Finlayson, C.; Gopal, B.; Květ, J.; Mitchell, S.; Mitsch, W.; Robarts, R. Current State of Knowledge Regarding the World’s Wetlands and Their Future under Global Climate Change: A Synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef]
- Aunchayna, R. Teledetección del Cultivo del Arroz. Available online: https://www.urupov.org.uy/wp-content/uploads/2022/11/Informe-URUPOV-Teledeteccion-del-cultivo-de-arroz-Zafra-21_22.pdf (accessed on 25 November 2024).
- Ministerio de Ganadería, Agricultura y Pesca. Actualización de Cobertura y Uso del Suelo del Uruguay al año 2020/2021. Available online: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/noticias/actualizacion-cobertura-uso-del-suelo-del-uruguay-ano-20202021 (accessed on 25 November 2024).
- Alciaturi, G. Integrating Sentinel 1 and Sentinel 2 Time Series for Land Use/Land Cover Mapping South American Rice-Producing Regions: A Case Study from Cuenca Laguna Merín, Uruguay. In Conferência Nacional de Observação da Terra-Terra em Foco; Agência Espacial Portuguesa: Braga, Portugal, 2024. [Google Scholar]
- Yuh, Y.; Tracz, W.; Matthews, H.; Turner, S. Application of Machine Learning Approaches for Land Cover Monitoring in Northern Cameroon. Ecol. Inf. 2023, 74, 101955. [Google Scholar] [CrossRef]
- Shuai, S.; Zhang, Z.; Zhang, T.; Luo, W.; Tan, L.; Duan, X.; Wu, J. Innovative Decision Fusion for Accurate Crop/Vegetation Classification with Multiple Classifiers and Multisource Remote Sensing Data. Remote Sens. 2024, 16, 1579. [Google Scholar] [CrossRef]
- Sourav, N.; Kaur, B. Crop Classification Using Sentinel-1 and Sentinel-2: A Machine Learning Method. In Proceedings of the 2024 Second International Conference on Data Science and Information System (ICDSIS), Hassan, India, 17–18 May 2024; pp. 1–6. [Google Scholar]
- Steinke, V.; Saito, C. Priority Wetlands for Conservation of Waterbird’s Diversity in the Mirim Lagoon Catchment Area (Brazil-Uruguay). Pan-Am. J. Aquat. Sci. 2013, 8, 221–239. [Google Scholar]
- Achkar, M.; Dominguez, A.; Pesce, F. Cuenca de la Laguna Merín-Uruguay. Aportes Para la Discusión Ciudadana. Available online: https://www.redes.org.uy/2012/12/18/cuenca-de-la-laguna-merin-uruguay-aportes-para-la-discusion-ciudadana/ (accessed on 26 May 2023).
- Ministerio de Ambiente. Evaluación de la Calidad de Agua de la Cuenca de la Laguna Merín 2015–2019. Available online: https://www.ambiente.gub.uy/oan/documentos/DCA_Informe-evaluaci%C3%B3n-calidad-de-agua_Laguna-Mer%C3%ADn-2015-2019.pdf (accessed on 26 May 2023).
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1974; pp. 309–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.; Roy, P.; Dwevedi, R. Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index Product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Rikimaru, A.; Roy, P.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Khoirrurrizqi, Y.; Adhy, F.; Kharisma, D.; Haryoko, U.; Mukhlis, R.; Irawan, Y. Machine Learning-Based Rice Field Mapping in Kulon Progo Using a Fusion of Multispectral and SAR Imageries. Forum Geogr. 2023, 37, 134–148. [Google Scholar] [CrossRef]
- Kruasilp, J.; Pattanakiat, S.; Phutthai, T.; Vardhanabindu, P.; Nakmuenwai, P. Evaluation of Land Use Land Cover Changes in Nan Province, Thailand, Using Multi-Sensor Satellite Data and Google Earth Engine. Environ. Nat. Resour. J. 2023, 21, 186–197. [Google Scholar] [CrossRef]
- Tuvdendorj, B.; Zeng, H.; Wu, B.; Elnashar, A.; Zhang, M.; Tian, F.; Nabil, M.; Nanzad, L.; Bulkhbai, A.; Natsagdorj, N. Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia. Remote Sens. 2022, 14, 1830. [Google Scholar] [CrossRef]
- McCoy, R. Field Methods in Remote Sensing; Guilford Press: New York, NY, USA, 2005; p. 159. [Google Scholar]
- Fonte, C.; Duarte, D.; Jesus, I.; Costa, H.; Benevides, P.; Moreira, F.; Caetano, M. Accuracy Assessment and Comparison of National, European and Global Land Use Land Cover Maps at the National Scale—Case Study: Portugal. Remote Sens. 2024, 16, 1504. [Google Scholar] [CrossRef]
- McRoberts, R.; Stehman, S.; Liknes, G.; Næsset, E.; Sannier, C.; Walters, B. The Effects of Imperfect Reference Data on Remote Sensing-Assisted Estimators of Land Cover Class Proportions. ISPRS J. Photogramm. Remote Sens. 2018, 142, 292–300. [Google Scholar] [CrossRef]
- Thompson, I.; Maher, S.; Rouillard, D.; Fryxell, J.; Baker, J. Accuracy of Forest Inventory Mapping: Some Implications for Boreal Forest Management. For. Ecol. Manag. 2007, 252, 208–221. [Google Scholar] [CrossRef]
- Halabisky, M.; Babcock, C.; Moskal, L. Harnessing the Temporal Dimension to Improve Object-Based Image Analysis Classification of Wetlands. Remote Sens. 2018, 10, 1467. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.; Tuleau-Malot, C.; Villa-Vialaneix, N. Random Forests for Big Data. Big Data Res. 2017, 9, 28–46. [Google Scholar] [CrossRef]
- Ramo, R.; Chuvieco, E. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sens. 2017, 9, 1193. [Google Scholar] [CrossRef]
- Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Bagui, S.; Fang, X.; Kalaimannan, E.; Bagui, S.; Sheehan, J. Comparison of Machine-Learning Algorithms for Classification of VPN Network Traffic Flow Using Time-Related Features. J. Cyber Secur. Technol. 2017, 1, 108–126. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016, arXiv:1603.02754v3. [Google Scholar]
- Wu, Y.; Zhang, Z.; Crabbe, M.; Chandra, L. Statistical Learning-Based Spatial Downscaling Models for Precipitation Distribution. Adv. Meteorol. 2022, 2022, 3140872. [Google Scholar] [CrossRef]
- Tamirat, H.; Argaw, M.; Tekalign, M. Support Vector Machine-Based Spatiotemporal Land Use Land Cover Change Analysis in a Complex Urban and Rural Landscape of Akaki River Catchment, a Suburb of Addis Ababa, Ethiopia. Heliyon 2023, 9, e22510. [Google Scholar] [CrossRef] [PubMed]
- Gholami, R.; Fakhari, N. Handbook of Neural Computation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 515–535. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Statistics for Engineering and Information Science; Springer: New York, NY, USA, 2000. [Google Scholar]
- Chandrasekhar, N.; Peddakrishna, S. Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization. Processes 2023, 11, 1210. [Google Scholar] [CrossRef]
- Marcot, B.; Hanea, A. What Is an Optimal Value of k in K-Fold Cross-Validation in Discrete Bayesian Network Analysis? Comput. Stat. 2021, 36, 2009–2031. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Chen, W.; Li, X.; Wang, L. Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery. Rem Sens. 2020, 12, 82. [Google Scholar] [CrossRef]
- Phinzi, K.; Abriha, D.; Szabó, S. Classification Efficacy Using K-Fold Cross-Validation and Bootstrapping Resampling Techniques on the Example of Mapping Complex Gully Systems. Remote Sens. 2021, 13, 2980. [Google Scholar] [CrossRef]
- Cerulli, G. Machine learning using Stata/Python. Stata J. 2022, 22, 772–810. [Google Scholar] [CrossRef]
- Liang, J.; Sawut, M.; Cui, J.; Hu, X.; Xue, Z.; Zhao, M.; Zhang, X.; Rouzi, A.; Ye, X.; Xilike, A. Object-Oriented Multi-Scale Segmentation and Multi-Feature Fusion-Based Method for Identifying Typical Fruit Trees in Arid Regions Using Sentinel-1/2 Satellite Images. Sci. Rep. 2024, 14, 18230. [Google Scholar] [CrossRef] [PubMed]
- Abera, T.; Vuorinne, I.; Munyao, M.; Pellikka, P.; Heiskanen, J. Land Cover Map for Multifunctional Landscapes of Taita Taveta County, Kenya, Based on Sentinel-1 Radar, Sentinel-2 Optical, and Topoclimatic Data. Data 2022, 7, 36. [Google Scholar] [CrossRef]
- Prasad, P.; Loveson, V.; Chandra, P.; Kotha, M. Evaluation and Comparison of the Earth Observing Sensors in Land Cover/Land Use Studies Using Machine Learning Algorithms. Ecol. Inform. 2022, 68, 101522. [Google Scholar] [CrossRef]
- Santos, A.; Barbosa, M.; Anjinho, P.; Parizotto, D.; Mauad, F. Integrated Use of Synthetic Aperture Radar and Optical Data in Mapping Native Vegetation: A Study in a Transitional Brazilian Cerrado–Atlantic Forest Interface. Remote Sens. 2024, 16, 2559. [Google Scholar] [CrossRef]
- Mengesha, T.; Desta, L.; Gamba, P.; Ayehu, G. Multi-Temporal Passive and Active Remote Sensing for Agricultural Mapping and Acreage Estimation in the Context of Small Farm Holdings in Ethiopia. Land 2024, 13, 335. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land Use Mapping Using Sentinel-1 and Sentinel-2 Time Series in a Heterogeneous Landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Fassnacht, F.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, H.; Liu, S.; Zhou, G.; Fang, J.; Yu, G.; Tang, X.; Wang, W.; Yan, J.; Wang, G.; et al. Mapping forest type and age in China’s plantations. Sci. Total Environ. 2020, 744, 140790. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ren, C.; Wang, Z.; Jia, M.; Yu, W.; Ren, H.; Xia, C. Evaluating the Potential of Sentinel-2 Time Series Imagery and Machine Learning for Tree Species Classification in a Mountainous Forest. Remote Sens. 2024, 16, 293. [Google Scholar] [CrossRef]
- Dubois, C.; Mueller, M.; Pathe, C.; Jagdhuber, T.; Cremer, F.; Thiel, C.; Schmullius, C. Characterization of Land Cover Seasonality in Sentinel-1 Time Series Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 97–104. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive review. GIScience Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Sahour, H.; Kemink, K.; O’Connell, J. Integrating SAR and Optical Remote Sensing for Conservation-Targeted Wetlands Mapping. Remote Sens. 2022, 14, 159. [Google Scholar] [CrossRef]
- Baldi, G.; Paruelo, J. Land-Use and Land Cover Dynamics in South American Temperate Grasslands. Ecol. Soc. 2008, 13, 6. [Google Scholar] [CrossRef]
- Ríos, C.; Lezama, F.; Rama, G.; Baldi, G.; Baeza, S. Natural grassland remnants in dynamic agricultural landscapes: Identifying drivers of fragmentation. Perspect. Ecol. Conserv. 2022, 20, 205–215. [Google Scholar] [CrossRef]
- Nguyen, T.; Rußwurm, M.; Lenczner, G.; Tuia, D. Multi-Temporal Forest Monitoring in the Swiss Alps with Knowledge-Guided Deep Learning. Remote Sens. Environ. 2024, 305, 114109. [Google Scholar] [CrossRef]
- Kacic, P.; Gessner, U.; Holzwarth, S.; Thonfeld, F.; Kuenzer, C. Assessing Experimental Silvicultural Treatments Enhancing Structural Complexity in a Central European Forest–BEAST Time-series Analysis Based on Sentinel-1 and Sentinel-2. Remote Sens. Ecol. Conserv. 2024, 10, 531–550. [Google Scholar] [CrossRef]
- Vanderhoof, M.; Alexander, L.; Christensen, J.; Solvik, K.; Nieuwlandt, P.; Sagehorn, M. High-Frequency Time Series Comparison of Sentinel-1 and Sentinel-2 Satellites for Mapping Open and Vegetated Water across the United States (2017–2021). Remote Sens. Environ. 2023, 288, 1–28. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, S.; Dardanelli, G. Vegetation Classification and Evaluation of Yancheng Coastal Wetlands Based on Random Forest Algorithm from Sentinel-2 Images. Remote Sens. 2024, 16, 1124. [Google Scholar] [CrossRef]
- Yan, X.; Niu, Z. Classification Feature Optimization for Global Wetlands Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8058–8072. [Google Scholar] [CrossRef]
- Gong, Z.; Ge, W.; Guo, J.; Liu, J. Satellite Remote Sensing of Vegetation Phenology: Progress, Challenges, and Opportunities. ISPRS J. Photogramm. Remote Sens. 2024, 217, 149–164. [Google Scholar] [CrossRef]
- Vaghela, P.; Raja, R. Automatic Identification of Tree Species from Sentinel-2A Images Using Band Combinations and Deep Learning. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Vizzari, M.; Lesti, G.; Acharki, S. Crop Classification in Google Earth Engine: Leveraging Sentinel-1, Sentinel-2, European CAP Data, and Object-Based Machine-Learning Approaches. Geo-Spat. Inf. Sci. 2024, 1–16. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Cuypers, S.; Nascetti, A.; Vergauwen, M. Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2023, 15, 2501. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Wang, Y.; Tao, R.; Du, Q. Representation-Enhanced Status Replay Network for Multisource Remote-Sensing Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 15346–15358. [Google Scholar] [CrossRef]
- Nitze, I.; Heidler, K.; Barth, S.; Grosse, G. Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps. Remote Sens. 2021, 13, 4294. [Google Scholar] [CrossRef]
- Freitas, P.; Vieira, G.; Canário, J.; Vincent, W.F.; Pina, P.; Mora, C. A Trained Mask R-CNN Model over PlanetScope Imagery for Very-High Resolution Surface Water Mapping in Boreal Forest-Tundra. Remote Sens. Environ. 2024, 304, 114047. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Zhang, H.; Wang, H.; Xi, X.; Yang, Z.; Du, M. TCPSNet: Transformer and Cross-Pseudo-Siamese Learning Network for Classification of Multi-Source Remote Sensing Images. Remote Sens. 2024, 16, 3120. [Google Scholar] [CrossRef]
- Xie, W.; Lu, Y.; Li, D.; Li, Y. Ebbinghaus-Curve Guided Low-Rank Component-Induced Attention for Multisource Remote Sensing Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Liu, R.; Ling, J.; Zhang, H. SoftFormer: SAR-Optical Fusion Transformer for Urban Land Use and Land Cover Classification. ISPRS J. Photogramm. Remote Sens. 2024, 218, 277–293. [Google Scholar] [CrossRef]
- Yu, X.; Hu, Z.; Luo, W.; Xue, Y. Reinforcement learning-based multi-objective differential evolution algorithm for feature selection. Inf. Sci. 2024, 661, 120185. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Jing, W.; He, G.; Zhu, L.; Gao, S. Multimodal Contrastive Learning for Remote Sensing Image Feature Extraction Based on Relaxed Positive Samples. Sensors 2024, 24, 7719. [Google Scholar] [CrossRef]
- Jodhani, K.; Gupta, N.; Parmar, A.; Bhavsar, J.; Patel, H.; Patel, D.; Singh, S.K.; Mishra, U.; Omar, P.J. Synergizing Google Earth Engine and Earth Observations for Potential Impact of Land Use/Land Cover on Air Quality. Results Eng. 2024, 22, 102039. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Al-Jarrah, M. Assessing the Impact of Land Cover on Air Quality Parameters in Jordan: A Spatiotemporal Study Using Remote Sensing and Cloud Computing (2019–2022). Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104293. [Google Scholar] [CrossRef]
- Camara, M.; Jamil, N.R.; Abdullah, A.F.B. Impact of Land Uses on Water Quality in Malaysia: A Review. Ecol. Process. 2019, 8, 10. [Google Scholar] [CrossRef]
- Locke, K.A. Impacts of Land Use/Land Cover on Water Quality: A Contemporary Review for Researchers and Policymakers. Water Qual. Res. J. 2024, 59, 89–106. [Google Scholar] [CrossRef]
- Yeneneh, N.; Elias, E.; Feyisa, G. Monitoring Soil Quality of Different Land Use Systems: A Case Study in Suha Watershed, Northwestern Highlands of Ethiopia. Environ. Syst. Res. 2024, 13, 7. [Google Scholar] [CrossRef]
- Zhang, H.; Niu, Y.; Zhang, H.; Huang, Q.; Luo, J.; Feng, S.; Jia, H. Soil Quality Assessment in Low Human Activity Disturbance Zones: A Study on the Qinghai-Tibet Plateau. Environ. Geochem. Health 2024, 46, 147. [Google Scholar] [CrossRef]
Composites | Bands |
---|---|
February 1 | B2feb, B3feb, B4feb, B8feb, B11feb and B12feb |
March 7 | B2mar, B3mar, B4mar, B8mar, B11mar and B12mar |
July 25 | B2jul, B3jul, B4jul, B8jul, B11jul and B12jul |
August 14 | B2aug, B3aug, B4aug, B8aug, B11aug and B12aug |
Index | References | Formulas | Derivatives |
---|---|---|---|
NDVI | [95] | (NIR + RED)/(NIR − RED) | NDVIfeb, NDVImar, NDVIjul and NDVIaug |
EVI | [96] | 2.5 × (NIR − RED)/(NIR + 6 × RED − 7.5 × BLUE) + 1) | EVIfeb, EVImar, EVIjul and EVIaug |
LSWI | [97] | (NIR − SWIR1)/(NIR + SWIR1) | LSWIfeb, LSWImar, LSWIjul and LSWIaug |
BSI | [98] | (SWIR1 + RED) − (NIR + BLUE)/(SWIR 1 + RED) + (NIR + BLUE) | BSIfeb, BSImar, BSIjul and BSIaug |
Season | Acquisition Dates | Polarisation | |
---|---|---|---|
VH | VV | ||
Summer | 12 January 2024 and 17 January 2024 | VHsum1 | VVsum1 |
24 January 2024 and 29 January 2024 | VHsum2 | VVsum2 | |
5 February 2024 and 10 February 2024 | VHsum3 | VVsum3 | |
17 February 2024 and 22 February 2024 | VHsum4 | VVsum4 | |
29 February 2024 and 5 March 2024 | VHsum5 | VVsum5 | |
Winter | 15 July 2024 and 22 July 2024 | VHwin1 | VVwin1 |
27 July 2024 and 3 August 2024 | VHwin2 | VVwin2 | |
8 August 2024 and 15 August 2024 | VHwin3 | VVwin3 | |
20 August 2024 and 27 August 2024 | VHwin4 | VVwin4 | |
1 September 2024 and 8 September 2024 | VHwin5 | VVwin5 |
Approach | Number of Samples | |||
---|---|---|---|---|
Summer | Winter | |||
Amount | % | Amount | % | |
Field data collection | 390 | 66.32 | 405 | 65.75 |
Visual analysis | 198 | 33.68 | 211 | 34.25 |
Total | 588 | 100 | 616 | 100 |
Class | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Season | RP | OSC | HE | CA | NF | SFV | WA | BL | BU | WI | PAF | Total |
Summer | 579 | 640 | 1136 | 576 | 812 | 222 | 142 | 256 | 37 | n/a | n/a | 4400 |
Winter | n/a | n/a | 1230 | 497 | 818 | 371 | 196 | n/a | 63 | 592 | 1835 | 5602 |
Classifier | Hyperparameters | Proposed Values |
---|---|---|
Random Forest | Number of trees | 50, 162, 275, 387, 500 |
Min. samples per split | 2, 4, 6 | |
Min. leaf population | 2, 4, 6 | |
Gradient Boosting Tree | Number of trees | 50, 162, 275, 387, 500 |
Learning rate | 0.1; 0.2; 1 | |
Min. leaf population | 2, 4, 6 | |
Support Vector Machines | Grid | Linear, polynomial, radial basis function |
Cost | 2, 5, 10 |
Statistics | |
---|---|
Ae: the proportion of agreement expected by chance | |
Model | Layer Stack | Classifier | Selected Hyperparameters | Performance (%) |
---|---|---|---|---|
SummRF | summer_stack | RF | Number of trees = 162 Min. samples per split = 4 Min. leaf population = 2 | 95 |
SummSVM | SVM | Grid = lineal Cost = 2 | 91 | |
SummGBT | GBT | Number of trees = 50 Learning rate = 0.2 Min. leaf population = 2 | 95 | |
WinRF | winter_stack | RF | Number of trees = 50 Min. samples per split = 2 Min. leaf population = 2 | 88 |
WinSVM | SVM | Grid = lineal Cost = 5 | 88 | |
WinGBT | GBT | Number of trees = 275 Learning rate = 0.2 Min. leaf population = 2 | 89 |
SummRF | SummSVM | SummGBT | ||||
---|---|---|---|---|---|---|
Class | Km2 | % | Km2 | % | Km2 | % |
WA | 213 | 0.74 | 288 | 1.00 | 194 | 0.67 |
HE | 19,817 | 68.85 | 17,660 | 61.36 | 18,709 | 65.00 |
NF | 2988 | 10.38 | 4574 | 15.89 | 2519 | 8.75 |
CA | 1326 | 4.61 | 1428 | 4.96 | 1277 | 4.44 |
RP | 1083 | 3.76 | 1034 | 3.59 | 1063 | 3.69 |
OSC | 1059 | 3.68 | 1324 | 4.60 | 1170 | 4.06 |
BL | 607 | 2.11 | 590 | 2.05 | 609 | 2.12 |
SFV | 1546 | 5.37 | 1744 | 6.06 | 3103 | 10.78 |
BU | 16 | 0.06 | 14 | 0.05 | 12 | 0.04 |
ND | 127 | 0.44 | 127 | 0.44 | 127 | 0.44 |
TOTAL | 28,783 | 100.00 | 28,783 | 100.00 | 28,783 | 100.00 |
WinRF | WinSVM | WinGBT | ||||
---|---|---|---|---|---|---|
Class | Km2 | % | Km2 | % | Km2 | % |
WA | 348 | 1.21 | 435 | 1.51 | 490 | 1.70 |
HE | 16,347 | 56.79 | 15,159 | 52.67 | 15,361 | 53.37 |
NF | 4310 | 14.98 | 4326 | 15.03 | 4309 | 14.97 |
CA | 1274 | 4.43 | 1462 | 5.08 | 1328 | 4.61 |
PAF | 3644 | 12.66 | 4015 | 13.95 | 3975 | 13.81 |
WC | 1795 | 6.24 | 1565 | 5.44 | 2307 | 8.02 |
SFV | 988 | 3.43 | 1744 | 6.06 | 935 | 3.25 |
BU | 18 | 0.06 | 19 | 0.07 | 19 | 0.07 |
ND | 59 | 0.20 | 59 | 0.20 | 59 | 0.20 |
TOTAL | 28,783 | 100.00 | 28,783 | 100.00 | 28,783 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alciaturi, G.; Wdowinski, S.; García-Rodríguez, M.d.P.; Fernández, V. Seasonal Land Use and Land Cover Mapping in South American Agricultural Watersheds Using Multisource Remote Sensing: The Case of Cuenca Laguna Merín, Uruguay. Sensors 2025, 25, 228. https://doi.org/10.3390/s25010228
Alciaturi G, Wdowinski S, García-Rodríguez MdP, Fernández V. Seasonal Land Use and Land Cover Mapping in South American Agricultural Watersheds Using Multisource Remote Sensing: The Case of Cuenca Laguna Merín, Uruguay. Sensors. 2025; 25(1):228. https://doi.org/10.3390/s25010228
Chicago/Turabian StyleAlciaturi, Giancarlo, Shimon Wdowinski, María del Pilar García-Rodríguez, and Virginia Fernández. 2025. "Seasonal Land Use and Land Cover Mapping in South American Agricultural Watersheds Using Multisource Remote Sensing: The Case of Cuenca Laguna Merín, Uruguay" Sensors 25, no. 1: 228. https://doi.org/10.3390/s25010228
APA StyleAlciaturi, G., Wdowinski, S., García-Rodríguez, M. d. P., & Fernández, V. (2025). Seasonal Land Use and Land Cover Mapping in South American Agricultural Watersheds Using Multisource Remote Sensing: The Case of Cuenca Laguna Merín, Uruguay. Sensors, 25(1), 228. https://doi.org/10.3390/s25010228