Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band
Abstract
1. Introduction
2. Design and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlJoumayly, M.; Rothemund, R.; Schaefer, M.; Heeren, W. 5G BAW technology: Challenges and solutions. In Proceedings of the 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 27–28 April 2022; pp. 1–3. [Google Scholar]
- Aigner, R.; Fattinger, G.; Schaefer, M.; Karnati, K.; Rothemund, R.; Dumont, F. BAW filters for 5G bands. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 1–4. [Google Scholar]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Pham, Q.-V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.-J.; Ding, Z. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 2020, 8, 116974–117017. [Google Scholar] [CrossRef]
- Ruby, R. Review and comparison of bulk acoustic wave FBAR, SMR technology. In Proceedings of the 2007 IEEE Ultrasonics Symposium Proceedings, New York, NY, USA, 28–31 October 2007; pp. 1029–1040. [Google Scholar]
- Chauhan, V.; Huck, C.; Frank, A.; Akstaller, W.; Weigel, R.; Hagelauer, A. Enhancing RF bulk acoustic wave devices: Multiphysical modeling and performance. IEEE Microw. Mag. 2019, 20, 56–70. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Sun, C. Materials, design, and characteristics of bulk acoustic wave resonator: A review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Trolier-McKinstry, S.; Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceramics 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Iborra, E.; Olivares, J.; Clement, M.; Capilla, J.; Felmetsger, V.; Mikhov, M. Piezoelectric and electroacoustic properties of V-doped and Ta-doped AlN thin films. In Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 21–25 July 2013; pp. 262–265. [Google Scholar]
- Iborra, E.; Capilla, J.; Olivares, J.; Clement, M.; Felmetsger, V. Piezoelectric and electroacoustic properties of Ti-doped AlN thin films as a function of Ti content. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 2734–2737. [Google Scholar]
- Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X. Ferromagnetic properties of Mn-doped AlN. Phys. B Condens. Matter 2008, 403, 4096–4099. [Google Scholar] [CrossRef]
- Yao, G.; Fan, G.; Xing, H.; Zheng, S.; Ma, J.; Yong, Z.; He, L. Electronic structure and magnetism of V-doped AlN. J. Magn. Magn. Mater. 2013, 331, 117–121. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Caro, M.A.; Zhang, S.; Riekkinen, T.; Ylilammi, M.; Moram, M.A.; Lopez-Acevedo, O.; Molarius, J.; Laurila, T. Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys. Condens. Matter 2015, 27, 245901. [Google Scholar] [CrossRef]
- Umeda, K.; Kawai, H.; Honda, A.; Akiyama, M.; Kato, T.; Fukura, T. Piezoelectric properties of ScAlN thin films for piezo-MEMS devices. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 733–736. [Google Scholar]
- Sano, K.-H.; Karasawa, R.; Yanagitani, T. High electromechanical coefficient kt2=19% thick ScAlN piezoelectric films for ultrasonic transducer in low frequency of 80 MHz. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Moreira, M.; Bjurström, J.; Katardjev, I.; Yantchev, V. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 2011, 86, 23–26. [Google Scholar] [CrossRef]
- Akiyama, M.; Kano, K.; Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009, 95, 162107. [Google Scholar] [CrossRef]
- Ruppel, C.C. Acoustic wave filter technology–A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Aigner, R. SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses. In Proceedings of the International Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 582–589. [Google Scholar]
- Matloub, R.; Artieda, A.; Sandu, C.; Milyutin, E.; Muralt, P. Electromechanical properties of Al0. 9Sc0. 1N thin films evaluated at 2.5 GHz film bulk acoustic resonators. Appl. Phys. Lett. 2011, 99, 092903. [Google Scholar] [CrossRef]
- Park, M.; Wang, J.; Dargis, R.; Clark, A.; Ansari, A. Super high-frequency scandium aluminum nitride crystalline film bulk acoustic resonators. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1689–1692. [Google Scholar]
- Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ansari, A. A Film Bulk Acoustic Resonator Based on Ferroelectric Aluminum Scandium Nitride Films. J. Microelectromechanical Syst. 2020, 29, 741–747. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Ansari, A. Ferroelectric aluminum scandium nitride thin film bulk acoustic resonators with polarization-dependent operating states. Phys. Status Solidi –Rapid Res. Lett. 2021, 15, 2100034. [Google Scholar] [CrossRef]
- Nam, S.; Peng, W.; Wang, P.; Wang, D.; Mi, Z.; Mortazawi, A. An mm-wave trilayer AlN/ScAlN/AlN higher order mode FBAR. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 803–806. [Google Scholar] [CrossRef]
- Zou, Y.; Cai, Y.; Gao, C.; Luo, T.; Liu, Y.; Xu, Q.; Wang, Y.; Nian, L.; Liu, W.; Soon, J.B.W.; et al. Design, fabrication, and characterization of aluminum scandium nitride-based thin film bulk acoustic wave filter. J. Microelectromechanical Syst. 2023, 32, 263–270. [Google Scholar] [CrossRef]
- Dou, W.; Zhou, C.; Qin, R.; Yang, Y.; Guo, H.; Mu, Z.; Yu, W. Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications. Nanomaterials 2023, 13, 2737. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Gunawan, T.S.; Praludi, T.; Hamidi, E. Design of microstrip hairpin bandpass filter for 2.9 GHz–3.1 GHz s-band radar with defected ground structure. Malays. J. Fundam. Appl. Sci. 2018, 14, 448–455. [Google Scholar] [CrossRef]
- Jamneala, T.; Bradley, P.; Koelle, U.B.; Chien, A. Modified Mason model for bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2025–2029. [Google Scholar] [CrossRef]
- Bi, F.Z.; Barber, B.P. Bulk acoustic wave RF technology. IEEE Microw. Mag. 2008, 9, 65–80. [Google Scholar] [CrossRef]
- Zou, Y.; Gao, C.; Zhou, J.; Liu, Y.; Xu, Q.; Qu, Y.; Liu, W.; Soon, J.B.W.; Cai, Y.; Sun, C. Aluminum scandium nitride thin-film bulk acoustic resonators for 5G wideband applications. Microsyst. Nanoeng. 2022, 8, 124. [Google Scholar] [CrossRef]
- Tag, A.; Chauhan, V.; Huck, C.; Bader, B.; Karolewski, D.; Pitschi, F.M.; Weigel, R.; Hagelauer, A. A method for accurate modeling of BAW filters at high power levels. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 2207–2214. [Google Scholar] [CrossRef]
- Tag, A.; Chauhan, V.; Weigel, R.; Hagelauer, A.; Bader, B.; Huck, C.; Pitschi, M.; Karolewski, D. Multiphysics modeling of BAW filters. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Schönweger, G.; Petraru, A.; Islam, M.R.; Wolff, N.; Haas, B.; Hammud, A.; Koch, C.; Kienle, L.; Kohlstedt, H.; Fichtner, S. From fully strained to relaxed: Epitaxial ferroelectric Al1−xScxN for III-N technology. Adv. Funct. Mater. 2022, 32, 2109632. [Google Scholar] [CrossRef]
- Moram, M.; Zhang, S. ScGaN and ScAlN: Emerging nitride materials. J. Mater. Chem. A 2014, 2, 6042–6050. [Google Scholar] [CrossRef]
- Zhang, S.; Holec, D.; Fu, W.Y.; Humphreys, C.J.; Moram, M.A. Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Satoh, Y.; Ikata, O. Ladder type SAW filter and its application to high power SAW devices. Int. J. High Speed Electron. Syst. 2000, 10, 825–865. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, L.; Wei, P.; Zhang, D.; Hao, Z. A high performance C-band FBAR filter. In Proceedings of the Microwave Conference, Nuremberg, Germany, 6–10 October 2013. [Google Scholar]
- Nor, N.M.; Khalid, N.; Osman, R.A.M.; Sauli, Z. Estimation of Material Damping Coefficients of AlN for Film Bulk Acoustic Wave Resonator. In Proceedings of the Materials Science Forum, Shenzhen, China, 25–26 September 2015; pp. 209–214. [Google Scholar]
- Kumar, Y.; Rangra, K.; Agarwal, R. Design and simulation of FBAR for quality factor enhancement. Mapan 2017, 32, 113–119. [Google Scholar] [CrossRef]
- Nor, N.I.M.; Shah, K.; Singh, J.; Khalid, N.; Sauli, Z. Design and analysis of film bulk acoustic wave resonator in Ku-band frequency for wireless communication. In Proceedings of the Active and Passive Smart Structures and Integrated Systems 2012, San Diego, CA, USA, 12–15 March 2012; pp. 555–563. [Google Scholar]
- Yang, Q.; Pang, W.; Zhang, D.; Zhang, H. A Modified Lattice Configuration Design for Compact Wideband Bulk Acoustic Wave Filter Applications. Micromachines 2016, 7, 133. [Google Scholar] [CrossRef]
- Campanella, H.; Narducci, M.; Wang, N.; Soon, J.B.W. RF-designed high-power lamb-wave aluminum–nitride resonators. IEEE Trans. Microw. Theory Tech. 2014, 63, 331–339. [Google Scholar] [CrossRef]
Resonator | AlN Seed Layer | Bottom Mo | Sc0.2Al0.8N | Top Mo | Mo Mass Loading |
---|---|---|---|---|---|
Series | 25 nm | 139 nm | 780 nm | 135 nm | 0 |
Parallel | 25 nm | 139 nm | 780 nm | 135 nm | 43 nm |
Resonator | fs (GHz) | fp (GHz) | (%) | Qs | Qp |
---|---|---|---|---|---|
Series | 3.0936 | 3.2760 | 13.0 | 295 | 209 |
Parallel | 2.9586 | 3.1372 | 13.3 | 267 | 217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Zheng, Y.; Li, H.; Ren, Y.; Gu, X.; Huang, X.; Wang, Y.; Qu, Y.; Liu, Y.; Cai, Y.; et al. Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band. Sensors 2024, 24, 2939. https://doi.org/10.3390/s24092939
Gao C, Zheng Y, Li H, Ren Y, Gu X, Huang X, Wang Y, Qu Y, Liu Y, Cai Y, et al. Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band. Sensors. 2024; 24(9):2939. https://doi.org/10.3390/s24092939
Chicago/Turabian StyleGao, Chao, Yupeng Zheng, Haiyang Li, Yuqi Ren, Xiyu Gu, Xiaoming Huang, Yaxin Wang, Yuanhang Qu, Yan Liu, Yao Cai, and et al. 2024. "Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band" Sensors 24, no. 9: 2939. https://doi.org/10.3390/s24092939
APA StyleGao, C., Zheng, Y., Li, H., Ren, Y., Gu, X., Huang, X., Wang, Y., Qu, Y., Liu, Y., Cai, Y., & Sun, C. (2024). Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band. Sensors, 24(9), 2939. https://doi.org/10.3390/s24092939