A Single-Shot Scattering Medium Imaging Method via Bispectrum Truncation
Abstract
:1. Introduction
2. Method
2.1. Principle of Speckle Autocorrelation Imaging
2.2. Bispectrum Phase Recovery Algorithm
3. Experiment Platform
4. Discussion of Experimental Results
4.1. Effect of Different Truncation Parameters on Object Reconstruction
4.2. Effects of Media with Different Scattering Degrees on the Quality of Object Reconstruction
4.3. Statistical Noise Analysis in Bispectrum Reconstruction Methods
4.4. Lens-like Properties of Scattering Media
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Artzi, N.; Oliva, N.; Puron, C.; Shitreet, S.; Artzi, S.; Ramos, A.B.; Groothuis, A.; Sahagian, G.; Edelman, E.R. In Vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat. Mater. 2011, 10, 890. [Google Scholar] [CrossRef]
- Zhu, L.; Soldevila, F.; Moretti, C.; D’arco, A.; Boniface, A.; Shao, X.; de Aguiar, H.B.; Gigan, S. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination. Nat. Commun. 2022, 13, 1447. [Google Scholar] [CrossRef]
- Fattal, R. Dehazing using color-lines. ACM Trans. Graph. 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Drews, P.; Nascimento, E.R.; Botelho, S.S.C.; Campos, M.F.M. Underwater Depth Estimation and Image Restoration Based on Single Images. IEEE Comput. Graph. Appl. 2016, 36, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Horstmeyer, R.; Ruan, H.; Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 2015, 9, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 2010, 18, 3444–3455. [Google Scholar] [CrossRef] [PubMed]
- Lhermite, J.; Suran, E.; Kermene, V.; Louradour, F.; Desfarges-Berthelemot, A.; Barthélémy, A. Coherent combining of 49 laser beams from a multiple core optical fiber by a spatial light modulator. Opt. Express 2010, 18, 4783–4789. [Google Scholar] [CrossRef]
- Blochet, B.; Bourdieu, L.; Gigan, S. Fast wavefront optimization for focusing through biological tissue (Conference Presentation). In Proceedings of the Adaptive Optics and Wavefront Control for Biological Systems III, San Francisco, CA, USA, 28 January–2 February 2017; p. 37. [Google Scholar]
- Katz, O.; Small, E.; Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics 2012, 6, 549–553. [Google Scholar] [CrossRef]
- Park, J.-H.; Yu, Z.; Lee, K.; Lai, P.; Park, Y. Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications. APL Photonics 2018, 3, 100901. [Google Scholar] [CrossRef]
- Popoff, S.M.; Lerosey, G.; Carminati, R.; Fink, M.; Boccara, A.C.; Gigan, S. Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Phys. Rev. Lett. 2010, 104, 100601. [Google Scholar] [CrossRef]
- Katz, O.; Ramaz, F.; Gigan, S.; Fink, M. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. Nat. Commun. 2019, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Katz, O.; Heidmann, P.; Fink, M.; Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 2014, 8, 784–790. [Google Scholar] [CrossRef]
- Xie, X.; Zhuang, H.; He, H.; Xu, X.; Liang, H.; Liu, Y.; Zhou, J. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation. Sci. Rep. 2018, 8, 4585. [Google Scholar] [CrossRef]
- Li, X.; Greenberg, J.A.; Gehm, M.E. Single-shot multispectral imaging through a thin scatterer. Optica 2019, 6, 864–871. [Google Scholar] [CrossRef]
- Xu, X.; Xie, X.; He, H.; Zhuang, H.; Zhou, J.; Thendiyammal, A.; Mosk, A.P. Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function. Opt. Express 2017, 25, 32829–32840. [Google Scholar] [CrossRef]
- Yang, W.; Li, G.; Situ, G. Imaging through scattering media with the auxiliary of a known reference object. Sci. Rep. 2018, 8, 9614. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, J.; Wu, T.; Zhu, L.; Shao, X. Tracking moving targets behind a scattering medium via speckle correlation. Appl. Opt. 2018, 57, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xue, Y.; Tian, L. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media. Optica 2018, 5, 1181–1190. [Google Scholar] [CrossRef]
- Tahir, W.; Wang, H.; Tian, L. Adaptive 3D descattering with a dynamic synthesis network. Light Sci. Appl. 2022, 11, 42. [Google Scholar] [CrossRef]
- Bai, B.; Li, Y.; Luo, Y.; Li, X.; Çetintaş, E.; Jarrahi, M.; Ozcan, A. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl. 2023, 12, 69. [Google Scholar] [CrossRef]
- Wang, X.; Jin, X.; Li, J.; Lian, X.; Ji, X.; Dai, Q. Prior-information-free single-shot scattering imaging beyond the memory effect. Opt. Lett. 2019, 44, 1423–1426. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wang, Z.; Wang, X.; Dai, Q. Depth of field extended scattering imaging by light field estimation. Opt. Lett. 2018, 43, 4871–4874. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Lu, D.; Pedrini, G.; Osten, W.; Situ, G.; He, W.; Peng, X. Extending the depth-of-field of imaging systems with a scattering diffuser. Sci. Rep. 2019, 9, 7165. [Google Scholar] [CrossRef]
- Li, W.; Xi, T.; He, S.; Liu, L.; Liu, J.; Liu, F.; Wang, B.; Wei, S.; Liang, W.; Fan, Z.; et al. Single-shot imaging through scattering media under strong ambient light interference. Opt. Lett. 2021, 46, 4538–4541. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Meng, X.; Yang, X.; Li, X.; Yin, Y. Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning. Opt. Lasers Eng. 2021, 149, 106819. [Google Scholar] [CrossRef]
- He, S.; Wang, X.; Ma, K.; Li, L.; Zhang, Y. Recursion-driven bispectral imaging for dynamic scattering scenes. Opt. Lett. 2023, 48, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.; He, S.; Liu, L.; Shao, X. Multitarget imaging through scattering media beyond the 3D optical memory effect. Opt. Lett. 2020, 45, 2692–2695. [Google Scholar] [CrossRef] [PubMed]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Brady, D.J.; Choi, K.; Marks, D.L.; Horisaki, R.; Lim, S. Compressive Holography. Opt. Express 2009, 17, 13040–13049. [Google Scholar] [CrossRef]
- Mukherjee, S.; Vijayakumar, A.; Kumar, M.; Rosen, J. 3D Imaging through Scatterers with Interferenceless Optical System. Sci. Rep. 2018, 8, 1134. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Y.; Wang, J.; Wu, T. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax. Appl. Phys. Lett. 2017, 110, 231101. [Google Scholar] [CrossRef]
- Wu, T.; Katz, O.; Shao, X.; Gigan, S. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. Opt. Lett. 2016, 41, 5003–5006. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 1978, 3, 27–29. [Google Scholar] [CrossRef]
- Lohmann, A.W.; Weigelt, G.; Wirnitzer, B. Speckle masking in astronomy: Triple correlation theory and applications. Appl. Opt. 1983, 22, 4028–4037. [Google Scholar] [CrossRef]
- Ayers, G.R.; Northcott, M.J.; Dainty, J.C. Knox–Thompson and triple-correlation imaging through atmospheric turbulence. J. Opt. Soc. Am. A 1988, 5, 963–985. [Google Scholar] [CrossRef]
- Pehlemann, E.; Von Der Lühe, O. Technical aspects of the speckle masking phase reconstruction algorithm. Astron. Astrophys. 1989, 216, 337–346. [Google Scholar]
- Readhead, A.C.S.; Nakajima, T.S.; Pearson, T.J.; Neugebauer, G.; Oke, J.B.; Sargent, W.L.W. Diffraction-limited imaging with ground-based optical telescopes. Astron. J. 1988, 95, 1278–1296. [Google Scholar] [CrossRef]
Data Calculation Amount | Time (s) | SNR (dB) | |
---|---|---|---|
Traditional method | 100% | 222.21 | 27.99 |
Our method | 20.25% | 152.88 | 27.60 |
Diffuser | SNR (dB) |
---|---|
220 Grit | 26.95 |
600 Grit | 27.60 |
1500 Grit | 29.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Shen, H.; Yuan, F.; Ma, T.; Dai, P.; Sun, Y.; Chu, H. A Single-Shot Scattering Medium Imaging Method via Bispectrum Truncation. Sensors 2024, 24, 2002. https://doi.org/10.3390/s24062002
Han Y, Shen H, Yuan F, Ma T, Dai P, Sun Y, Chu H. A Single-Shot Scattering Medium Imaging Method via Bispectrum Truncation. Sensors. 2024; 24(6):2002. https://doi.org/10.3390/s24062002
Chicago/Turabian StyleHan, Yuting, Honghai Shen, Fang Yuan, Tianxiang Ma, Pengzhang Dai, Yang Sun, and Hairong Chu. 2024. "A Single-Shot Scattering Medium Imaging Method via Bispectrum Truncation" Sensors 24, no. 6: 2002. https://doi.org/10.3390/s24062002
APA StyleHan, Y., Shen, H., Yuan, F., Ma, T., Dai, P., Sun, Y., & Chu, H. (2024). A Single-Shot Scattering Medium Imaging Method via Bispectrum Truncation. Sensors, 24(6), 2002. https://doi.org/10.3390/s24062002