Principal Component Analysis Enhanced with Bootstrapped Confidence Interval for the Classification of Parkinsonian Patients Using Gaussian Mixture Model and Gait Initiation Parameters
Abstract
:1. Introduction
- The mediolateral (ML)/anteroposterior (AP) APA
- The center of pressure (COP) shift/velocity AP/ML
- The center of mass (COM) shift/velocity AP/ML at heel off (HO), toe off (TO) and heel contact (HC)
- The foot-lift: time between HO and TO
- The step execution time (EXE)
- The vertical peak force at HC
2. Methods
2.1. Principal Component Analysis and Bootstrapping
2.2. Bootstrapping
2.3. Participants and Sample Collection
2.4. Experimental Task
2.5. Data Recordings of the Experimental Variables
- The ML/AP APA (in s): and
- The AP/ML COP shift (in m)
- The AP/ML COM velocity at HO, TO and HC (in m/s)
- The foot-lift time between HO and TO (in s)
- The vertical peak force at HC (in N)
3. Results on the Classification of Healthy and Parkinsonian Patients
4. Unsupervised Clustering Using Gaussian Mixture Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Horak, F.B.; Dimitrova, D.; Nutt, J.G. Direction-specific postural instability in subjects with Parkinson’s disease. Exp. Neurol. 2005, 193, 504–521. [Google Scholar] [CrossRef] [PubMed]
- Halliday, S.E.; Winter, D.A.; Frank, J.S.; Patla, A.E.; Prince, F. The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture 1998, 8, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena. Mov. Disord. 2004, 19, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Tambasco, N.; Romoli, M.; Calabresi, P. Levodopa in Parkinson’s Disease: Current Status and Future Developments. Curr. Neuropharmacol. 2018, 16, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, C.J.; Fliegen, S.; Groiss, S.J.; Wojtecki, L.; Schnitzler, A. An update on best practice of deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419838096. [Google Scholar] [CrossRef] [PubMed]
- Frazzitta, G.; Maestri, R.; Bertotti, G.; Riboldazzi, G.; Boveri, N.; Perini, M.; Uccellini, D.; Turla, M.; Comi, C.; Pezzoli, G.; et al. Intensive rehabilitation treatment in early Parkinson’s disease: A randomized pilot study with a 2-year follow-up. Neurorehabil. Neural Repair 2015, 29, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Bonora, G.; Mancini, M.; Carpinella, I.; Chiari, L.; Horak, F.B.; Ferrarin, M. Gait initiation is impaired in subjects with Parkinson’s disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors. Gait Posture 2017, 51, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, C.; Brandt, G.; Vissani, M.; Pozzi, N.G.; Canessa, A.; Brumberg, J.; Marotta, G.; Volkmann, J.; Mazzoni, A.; Pezzoli, G.; et al. Gait Initiation in Parkinson’s Disease: Impact of Dopamine Depletion and Initial Stance Condition. Front. Bioeng. Biotechnol. 2020, 8, 137. [Google Scholar] [CrossRef]
- Bogosian, A.; Rixon, L.; Hurt, C.S. Prioritising target non-pharmacological interventions for research in Parkinson’s disease: Achieving consensus from key stakeholders. Res. Involv. Engagem. 2020, 6, 35. [Google Scholar] [CrossRef]
- Delval, A.; Tard, C.; Defebvre, L. Why we should study gait initiation in Parkinson’s disease. Neurophysiol. Clin. 2014, 44, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Vialleron, T.; Delafontaine, A.; Millerioux, I.; Memari, S.; Fourcade, P.; Yiou, E. Acute effects of short-term stretching of the triceps surae on ankle mobility and gait initiation in patients with Parkinson’s disease. Clin. Biomech. 2021, 89, 105449. [Google Scholar] [CrossRef]
- Delafontaine, A.; Vialleron, T.; Hussein, T.; Yiou, E.; Honeine, J.-L.; Colnaghi, S. Anticipatory Postural Adjustments During Gait Initiation in Stroke Patients. Front. Neurol. 2019, 10, 352. [Google Scholar] [CrossRef]
- Brenière, Y.; Do, M.C.; Bouisset, S. Are Dynamic Phenomena Prior to Stepping Essential to Walking? J. Mot. Behav. 1987, 19, 62–76. [Google Scholar] [CrossRef]
- Brenière, Y.; Do, M.C. Control of Gait Initiation. J. Mot. Behav. 1991, 23, 235–240. [Google Scholar] [CrossRef]
- Yiou, E.; Caderby, T.; Delafontaine, A.; Fourcade, P.; Honeine, J.-L. Balance control during gait initiation: State-of-the-art and research perspectives. World J. Orthop. 2017, 8, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Chau, T. Review of analytical techniques for gait data. Part 2: Neural network and wavelet methods. Gait Posture 2001, 13, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Delafontaine, A.; Vialleron, T.; Diakhaté, D.G.; Fourcade, P.; Yiou, E. Effects of experimentally induced cervical spine mobility alteration on the postural organisation of gait initiation. Sci. Rep. 2022, 12, 6055. [Google Scholar] [CrossRef]
- Deluzio, K.; Astephen, J. Biomechanical features of gait waveform data associated with knee osteoarthritis: An application of principal component analysis. Gait Posture 2007, 25, 86–93. [Google Scholar] [CrossRef]
- Yoshida, K.; Commandeur, D.; Hundza, S.; Klimstra, M. Detecting differences in gait initiation between older adult fallers and non-fallers through multivariate functional principal component analysis. J. Biomech. 2022, 144, 111342. [Google Scholar] [CrossRef]
- Muniz, A.; Nadal, J. Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait. Gait Posture 2009, 29, 31–35. [Google Scholar] [CrossRef]
- Muniz, A.M.; Nadal, J.; Lyons, K.E.; Pahwa, R.; Liu, W. Long-term evaluation of gait initiation in six Parkinson’s disease patients with bilateral subthalamic stimulation. Gait Posture 2012, 35, 452–457. [Google Scholar] [CrossRef]
- Lukšys, D.; Jatužis, D.; Kaladytė-Lokominienė, R.; Bunevičiūtė, R.; Sawicki, A.; Griškevičius, J. Differentiation of Gait Using Principal Component Analysis and Application for Parkinson’s Disease Monitoring. In Proceedings of the 2018 International Conference BIOMDLORE, Bialystok, Poland, 20–30 June 2018; pp. 1–4. [Google Scholar]
- Peng, Q.; Zhao, J.; Xue, F. PCA-based bootstrap confidence interval tests for gene-disease association involving multiple SNPs. BMC Genet. 2010, 11, 6. [Google Scholar] [CrossRef]
- Pini, L.; de Lange, S.C.; Pizzini, F.B.; Galazzo, I.B.; Manenti, R.; Galluzzi, S.; Cotelli, M.S.; Corbetta, M.; Heuvel, M.P.v.D.; Pievani, M. A low-dimensional cognitive-network space in Alzheimer’s disease and frontotemporal dementia. Alzheimer’s Res. Ther. 2022, 14, 199. [Google Scholar] [CrossRef]
- Muniz, A.; Liu, H.; Lyons, K.; Pahwa, R.; Liu, W.; Nobre, F.; Nadal, J. Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait. J. Biomech. 2010, 43, 720–726. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Honeine, J.-L.; Schieppati, M.; Gagey, O.; Do, M.-C. By counteracting gravity, triceps surae sets both kinematics and kinetics of gait. Physiol. Rep. 2014, 2, e00229. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.; Hussein, S. Data dimensional reduction and principal components analysis. Procedia Comput. Sci. 2019, 163, 292–299. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; San Luciano, M.; Tanner, C. The epidemiology of Parkinson’s disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, C.; Beccaria, L.; Haufe, S.; Volkmann, J.; Pezzoli, G.; Isaias, I.U. Gait Initiation Impairment in Patients with Parkinson’s Disease and Freezing of Gait. Bioengineering 2022, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Bayot, M.; Delval, A.; Moreau, C.; Defebvre, L.; Hansen, C.; Maetzler, W.; Schlenstedt, C. Initial center of pressure position prior to anticipatory postural adjustments during gait initiation in people with Parkinson’s disease with freezing of gait. Parkinsonism Relat. Disord. 2021, 84, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.G.; Nutt, J.G.; Horak, F.B. Recovery from Multiple APAs Delays Gait Initiation in Parkinson’s Disease. Front. Hum. Neurosci. 2017, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Chastan, N.; Do, M.C.; Bonneville, F.; Torny, F.; Bloch, F.; Westby, G.W.; Dormont, D.; Agid, Y.; Welter, M.L. Gait and balance disorders in Parkinson’s disease: Impaired active braking of the fall of centre of gravity. Mov. Disord. 2009, 24, 188–195. [Google Scholar] [CrossRef]
Healthy | Parkinsonian | |
---|---|---|
Healthy | 89.8% True healthy | 10.2% False Parkinsonian |
Parkinsonian | 1.9% False healthy | 98.1% True Parkinsonian |
Healthy | Parkinsonian | |
---|---|---|
Healthy | 92% True healthy | 8% False Parkinsonian |
Parkinsonian | 2.5% False healthy | 97.5% True Parkinsonian |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loete, F.; Simonet, A.; Fourcade, P.; Yiou, E.; Delafontaine, A. Principal Component Analysis Enhanced with Bootstrapped Confidence Interval for the Classification of Parkinsonian Patients Using Gaussian Mixture Model and Gait Initiation Parameters. Sensors 2024, 24, 1885. https://doi.org/10.3390/s24061885
Loete F, Simonet A, Fourcade P, Yiou E, Delafontaine A. Principal Component Analysis Enhanced with Bootstrapped Confidence Interval for the Classification of Parkinsonian Patients Using Gaussian Mixture Model and Gait Initiation Parameters. Sensors. 2024; 24(6):1885. https://doi.org/10.3390/s24061885
Chicago/Turabian StyleLoete, Florent, Arnaud Simonet, Paul Fourcade, Eric Yiou, and Arnaud Delafontaine. 2024. "Principal Component Analysis Enhanced with Bootstrapped Confidence Interval for the Classification of Parkinsonian Patients Using Gaussian Mixture Model and Gait Initiation Parameters" Sensors 24, no. 6: 1885. https://doi.org/10.3390/s24061885
APA StyleLoete, F., Simonet, A., Fourcade, P., Yiou, E., & Delafontaine, A. (2024). Principal Component Analysis Enhanced with Bootstrapped Confidence Interval for the Classification of Parkinsonian Patients Using Gaussian Mixture Model and Gait Initiation Parameters. Sensors, 24(6), 1885. https://doi.org/10.3390/s24061885