Prediction of Soluble-Solid Content in Citrus Fruit Using Visible–Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Soluble Solid Content (SSC) Measurements
2.3. Hyperspectral Imaging System
2.4. Hyperspectral Image Collection and Extraction
2.5. Spectral Preprocessing
2.6. Effective Wavelength Selection Using Competitive Adaptive Reweighted Sampling
2.7. Outlier Detection
2.8. Development of Multivariate Model
3. Results and Discussion
3.1. Internal Quality of Citrus Fruits
3.2. Spectra Features
3.3. Effective Wavelength Selection by CARS
3.4. Prediction Model of Citrus Fruit SSC
3.5. Regression Coefficient of the PLSR Model
3.6. Performance of the Optimal Model for Predicting SSC in Unknown Citrus Fruit Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, X.; Li, J.; Yi, S.; Jin, G.; Qiu, X.; Li, Y. Nondestructive determining the soluble solids content of citrus using near infrared transmittance technology combined with the variable selection algorithm. Artif. Intell. Agric. 2020, 4, 48–57. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, B.; Pan, F.; Luo, W. Determination of soluble solids content in oranges using visible and near infrared full transmittance hyperspectral imaging with comparative analysis of models. Postharvest Biol. Technol. 2020, 163, 111148. [Google Scholar] [CrossRef]
- Torres, I.; Sánchez, M.T.; de la Haba, M.J.; Pérez-Marín, D. LOCAL regression applied to a citrus multispecies library to assess chemical quality parameters using near infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 217, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.; Guerra, R.; Cruz, S.P.; Antunes, M.D.; Brázio, A.; Afonso, A.M.; Daniel, M.; Panagopoulos, T.; Gonçalves, I.; Cavaco, A.M. Ripening assessment of ‘Ortanique’ (Citrus reticulata Blanco x Citrus sinensis (L.) Osbeck) on tree by SW-NIR reflectance spectroscopy-based calibration models. Postharvest Biol. Technol. 2022, 183, 111750. [Google Scholar] [CrossRef]
- Lu, R.; Van Beers, R.; Saeys, W.; Li, C.; Cen, H. Measurement of optical properties of fruits and vegetables: A review. Postharvest Biol. Technol. 2020, 159, 111003. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit quality evaluation using spectroscopy technology: A review. Sensors 2015, 15, 11889–11927. [Google Scholar] [CrossRef]
- Song, J.; Li, G.; Yang, X.; Liu, X.; Xie, L. Rapid analysis of soluble solid content in navel orange based on visible-near infrared spectroscopy combined with a swarm intelligence optimization method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117815. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wu, X.; Chen, Q.; Lu, B.; Dai, C. Detection of viability of soybean seed based on fluorescence hyperspectra and CARS-SVM-AdaBoost model. J. Food Process. Preserv. 2019, 43, e14238. [Google Scholar] [CrossRef]
- Yang, B.; Gao, Y.; Yan, Q.; Qi, L.; Zhu, Y.; Wang, B. Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery. Sensors 2020, 20, 5021. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, Q.; Li, B.; Xie, Y.; Lu, H.; Xu, S. Research on an Improved Non-Destructive Detection Method for the Soluble Solids Content in Bunch-Harvested Grapes Based on Deep Learning and Hyperspectral Imaging. Appl. Sci. 2023, 13, 6776. [Google Scholar] [CrossRef]
- Riccioli, C.; Pérez-Marín, D.; Garrido-Varo, A. Optimizing spatial data reduction in hyperspectral imaging for the prediction of quality parameters in intact oranges. Postharvest Biol. Technol. 2021, 176, 111504. [Google Scholar] [CrossRef]
- Wang, A.; Xie, L. Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit. J. Food Eng. 2014, 143, 17–24. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, B.; Li, J.; Huang, W.; Wang, C. Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosyst. Eng. 2016, 143, 9–19. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Jiang, H.; Fu, X.; Yu, H.; Xu, H.; Ying, Y. Non-Invasive Measurements of the Internal Quality of Intact ‘Gannan’ Navel Orange by Vis/Nir Spectroscopy. Trans. ASABE 2008, 51, 1009–1014. [Google Scholar] [CrossRef]
- Kim, M.J.; Lim, J.; Kwon, S.W.; Kim, G.; Kim, M.S.; Cho, B.K.; Baek, I.; Lee, S.H.; Seo, Y.; Mo, C. Geographical origin discrimination of white rice based on image pixel size using hyperspectral fluorescence imaging analysis. Appl. Sci. 2020, 10, 5794. [Google Scholar] [CrossRef]
- Cho, B.H.; Lee, K.B.; Hong, Y.; Kim, K.C. Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model. Agronomy 2022, 12, 2236. [Google Scholar] [CrossRef]
- Kim, W.-K.; Hong, S.-J.; Cui, J.; Kim, H.-J.; Park, J.; Yang, S.-H.; Kim, G. Application of NIR Spectroscopy and Artificial Neural Network Techniques for Real-Time Discrimination of Soil Categories. J. Korean Soc. Nondestruct. Test. 2017, 37, 148–157. [Google Scholar] [CrossRef]
- Seki, H.; Ma, T.; Murakami, H.; Tsuchikawa, S.; Inagaki, T. Visualization of Sugar Content Distribution of White Strawberry by Near-Infrared Hyperspectral Imaging. Foods 2023, 12, 931. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Terry, L.A.; Landahl, S.; Cronje, P.J.R.; Nieuwoudt, H.H.; Hanssens, A.; Saeys, W.; Nicolaï, B.M. Evaluation of Fourier transform-NIR spectroscopy for integrated external and internal quality assessment of Valencia oranges. J. Food Compos. Anal. 2013, 31, 144–154. [Google Scholar] [CrossRef]
- Barra, I.; Haefele, S.M.; Sakrabani, R.; Kebede, F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances—A review. TrAC Trends Anal. Chem. 2021, 135, 116166. [Google Scholar] [CrossRef]
- Sarkar, S.; Basak, J.K.; Moon, B.E.; Kim, H.T. A comparative study of PLSR and SVM-R with various preprocessing techniques for the quantitative determination of soluble solids content of hardy kiwi fruit by a portable Vis/NIR spectrometer. Foods 2020, 9, 1078. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Dong-Sheng, C.; Yi-Zeng, L.; Qing-Song, X.; Hong-Dong, L.; Xian, C. A New Strategy of Outlier Detection for QSAR/QSPR. J. Comput. Chem. 2010, 31, 592–602. [Google Scholar]
- Zhang, L.; Wang, D.; Gao, R.; Li, P.; Zhang, W.; Mao, J.; Yu, L.; Ding, X.; Zhang, Q. Improvement on enhanced Monte-Carlo outlier detection method. Chemom. Intell. Lab. Syst. 2016, 151, 89–94. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, H.I.; Choi, J.H.; Lim, K.J.; Mo, C. Development of a Soil Organic Matter Content Prediction Model Based on Supervised Learning Using Vis-NIR/SWIR Spectroscopy. Sensors 2022, 22, 5129. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.M.; Fernandes, A.M.; Faia, A.; Melo-Pinto, P. Comparison of different approaches for the prediction of sugar content in new vintages of whole Port wine grape berries using hyperspectral imaging. Comput. Electron. Agric. 2017, 140, 244–254. [Google Scholar] [CrossRef]
- Omar, A.F. Spectroscopic profiling of soluble solids content and acidity of intact grape, lime, and star fruit. Sens. Rev. 2013, 33, 238–245. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Ouyang, A. Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN. LWT 2010, 43, 602–607. [Google Scholar] [CrossRef]
- Tian, S.; Liu, W.; Xu, H. Improving the prediction performance of soluble solids content (SSC) in kiwifruit by means of near-infrared spectroscopy using slope/bias correction and calibration updating. Food Res. Int. 2023, 170, 112988. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, R.; Hao, Y.; Sun, X.; Ouyang, A. Improvement of Near-Infrared Spectral Calibration Models for Brix Prediction in “Gannan” Navel Oranges by a Portable Near-Infrared Device. Food Bioprocess Technol. 2012, 5, 1106–1112. [Google Scholar] [CrossRef]
- Shao, Y.; He, Y.; Bao, Y.; Mao, J. Near-infrared spectroscopy for classification of oranges and prediction of the sugar content. Int. J. Food Prop. 2009, 12, 644–658. [Google Scholar] [CrossRef]
- Kim, S.Y.; Hong, S.J.; Kim, E.; Lee, C.H.; Kim, G. Application of ensemble neural-network method to integrated sugar content prediction model for citrus fruit using Vis/NIR spectroscopy. J. Food Eng. 2023, 338, 111254. [Google Scholar] [CrossRef]
- Agricultural Mechanization Promotion Act. Available online: https://elaw.klri.re.kr/kor_service/lawViewMultiContent.do?hseq=35821 (accessed on 17 October 2023).
Harvest Date | 6 October 2022 | 15 October 2022 | 29 October 2022 | 10 November 2022 | 19 November 2022 | 30 November 2022 |
---|---|---|---|---|---|---|
Number of samples | 74 | 50 | 50 | 50 | 50 | 50 |
Index | PLSR | CARS-PLSR | PLSR + Outlier Detection | CARS-PLSR + Outlier Detection |
---|---|---|---|---|
Calibration dataset | 454 | 454 | 442 | 442 |
Prediction dataset | 194 | 194 | 189 | 189 |
Sample Set | Min. (°Brix) | Max. (°Brix) | Mean (°Brix) | STD. (a) (°Brix) |
---|---|---|---|---|
Stage 1 | 7.40 | 11.50 | 9.05 | 0.81 |
Stage 2 | 7.50 | 11.20 | 8.97 | 0.75 |
Stage 3 | 8.40 | 11.80 | 9.59 | 0.73 |
Stage 4 | 8.80 | 11.80 | 9.96 | 0.61 |
Stage 5 | 9.20 | 12.20 | 10.56 | 0.65 |
Stage 6 | 10.20 | 12.50 | 11.34 | 0.43 |
Calibration dataset | 7.40 | 12.50 | 9.89 | 1.07 |
Prediction dataset | 7.50 | 12.50 | 9.76 | 1.10 |
Total | 7.40 | 12.50 | 9.85 | 1.08 |
Model | Preprocessing | Rc2 | RMSEC (°Brix) | Rv2 | RMSEV (°Brix) | Optimal Factors |
---|---|---|---|---|---|---|
PLSR | Raw | 0.667 | 0.613 | 0.626 | 0.651 | 11 |
Moving average | 0.669 | 0.611 | 0.639 | 0.640 | 13 | |
NOR (a) (maximum) | 0.650 | 0.628 | 0.610 | 0.665 | 10 | |
NOR (mean) | 0.644 | 0.634 | 0.605 | 0.669 | 10 | |
NOR (range) | 0.645 | 0.633 | 0.608 | 0.666 | 10 | |
SNV | 0.643 | 0.635 | 0.610 | 0.665 | 9 | |
MSC | 0.614 | 0.660 | 0.581 | 0.689 | 7 | |
1st order derivative | 0.647 | 0.631 | 0.603 | 0.670 | 5 | |
CARS-PLSR | Raw | 0.671 | 0.609 | 0.646 | 0.633 | 9 |
Moving average | 0.677 | 0.604 | 0.654 | 0.626 | 9 | |
NOR (maximum) | 0.662 | 0.617 | 0.640 | 0.638 | 8 | |
NOR (mean) | 0.668 | 0.612 | 0.646 | 0.634 | 9 | |
NOR (range) | 0.670 | 0.610 | 0.648 | 0.632 | 9 | |
SNV | 0.665 | 0.614 | 0.648 | 0.631 | 9 | |
MSC | 0.641 | 0.637 | 0.619 | 0.657 | 8 | |
1st order derivative | 0.565 | 0.700 | 0.530 | 0.731 | 10 | |
PLSR + Outlier detection | Raw | 0.736 | 0.536 | 0.704 | 0.569 | 11 |
Moving average | 0.738 | 0.534 | 0.707 | 0.568 | 12 | |
NOR (maximum) | 0.720 | 0.552 | 0.682 | 0.589 | 10 | |
NOR (mean) | 0.715 | 0.558 | 0.685 | 0.586 | 10 | |
NOR (range) | 0.715 | 0.557 | 0.683 | 0.589 | 10 | |
SNV | 0.710 | 0.562 | 0.681 | 0.591 | 9 | |
MSC | 0.709 | 0.563 | 0.679 | 0.593 | 9 | |
1st order derivative | 0.710 | 0.562 | 0.676 | 0.596 | 5 | |
CARS-PLSR + Outlier detection | Raw | 0.722 | 0.545 | 0.700 | 0.575 | 8 |
Moving average | 0.733 | 0.533 | 0.715 | 0.553 | 9 | |
NOR (maximum) | 0.723 | 0.543 | 0.702 | 0.565 | 8 | |
NOR (mean) | 0.730 | 0.537 | 0.711 | 0.556 | 7 | |
NOR (range) | 0.707 | 0.559 | 0.688 | 0.578 | 7 | |
SNV | 0.728 | 0.538 | 0.711 | 0.558 | 7 | |
MSC | 0.715 | 0.551 | 0.695 | 0.573 | 7 | |
1st order derivative | 0.745 | 0.522 | 0.716 | 0.551 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-J.; Yu, W.-H.; Song, D.-J.; Chun, S.-W.; Kim, M.S.; Lee, A.; Kim, G.; Shin, B.-S.; Mo, C. Prediction of Soluble-Solid Content in Citrus Fruit Using Visible–Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm. Sensors 2024, 24, 1512. https://doi.org/10.3390/s24051512
Kim M-J, Yu W-H, Song D-J, Chun S-W, Kim MS, Lee A, Kim G, Shin B-S, Mo C. Prediction of Soluble-Solid Content in Citrus Fruit Using Visible–Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm. Sensors. 2024; 24(5):1512. https://doi.org/10.3390/s24051512
Chicago/Turabian StyleKim, Min-Jee, Woo-Hyeong Yu, Doo-Jin Song, Seung-Woo Chun, Moon S. Kim, Ahyeong Lee, Giyoung Kim, Beom-Soo Shin, and Changyeun Mo. 2024. "Prediction of Soluble-Solid Content in Citrus Fruit Using Visible–Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm" Sensors 24, no. 5: 1512. https://doi.org/10.3390/s24051512
APA StyleKim, M.-J., Yu, W.-H., Song, D.-J., Chun, S.-W., Kim, M. S., Lee, A., Kim, G., Shin, B.-S., & Mo, C. (2024). Prediction of Soluble-Solid Content in Citrus Fruit Using Visible–Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm. Sensors, 24(5), 1512. https://doi.org/10.3390/s24051512