Near-Infrared Fluorescence Imaging Sensor with Laser Diffuser for Visualizing Photoimmunotherapy Effects under Endoscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Fluorescence Imaging Camera with Laser Diffuser
2.2. Real-Time Fluorescence Imaging Using Test Sample by Developed System
2.3. Animal Model
2.4. In Vivo Fluorescence Imaging Using Developed System
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef]
- Litle, V.R.; Luketich, J.D.; Christie, N.A.; Buenaventura, P.O.; Alvelo-Rivera, M.; McCaughan, J.S.; Nguyen, N.T.; Fernando, H.C. Photodynamic therapy as palliation for esophageal cancer: Experience in 215 patients. Ann. Thorac. Surg. 2003, 76, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Maruoka, Y.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine 2021, 70, 103501. [Google Scholar] [CrossRef]
- Yano, T.; Minamide, T.; Takashima, K.; Nakajo, K.; Kadota, T.; Yoda, Y. Clinical Practice of Photodynamic Therapy Using Talaporfin Sodium for Esophageal Cancer. J. Clin. Med. 2021, 10, 2785. [Google Scholar] [CrossRef]
- Biel, M.A.; Gillenwater, A.M.; Cognetti, D.M.; Johnson, J.M.; Argiris, A.; Tahara, M. A global phase III multicenter, randomized, double-arm, open label trial of ASP-1929 photoimmunotherapy versus physician’s choice standard of care for the treatment of patients with locoregional, recurrent head and neck squamous cell carcinoma (rHNSCC). J. Clin. Oncol. 2019, 37 (Suppl. 15), TPS6094. [Google Scholar] [CrossRef]
- Miyazaki, N.L.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Review of RM-1929 Near-Infrared Photoimmunotherapy Clinical Efficacy for Unresectable and/or Recurrent Head and Neck Squamous Cell Carcinoma. Cancers 2023, 15, 5117. [Google Scholar] [CrossRef]
- Tahara, M.; Okano, S.; Enokida, T.; Ueda, Y.; Fujisawa, T.; Shinozaki, T.; Tomioka, T.; Okano, W.; Biel, M.A.; Ishida, K.; et al. A phase I, single-center, open-label study of RM-1929 photoimmunotherapy in Japanese patients with recurrent head and neck squamous cell carcinoma. Int. J. Clin. Oncol. 2021, 26, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Kadota, T.; Kotani, D.; Yoda, Y.; Fukutani, M.; Wakabayashi, M.; Nomura, S.; Fuse, N.; Sato, A.; Yano, T.; Shitara, K. A phase Ib study of near infrared photoimmunotherapy (NIR-PIT) using ASP-1929 in combination with nivolumab and for patients with advanced gastric or esophageal cancer (GE-PIT study, EPOC1901). J. Clin. Oncol. 2020, 38 (Suppl. 4), TPS457. [Google Scholar] [CrossRef]
- Mitsunaga, M.; Nakajima, T.; Sano, K.; Kramer-Marek, G.; Choyke, P.L.; Kobayashi, H. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer 2012, 12, 345. [Google Scholar] [CrossRef]
- Okuyama, S.; Nagaya, T.; Sato, K.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Interstitial near-infrared photoimmunotherapy: Effective treatment areas and light doses needed for use with fiber optic diffusers. Oncotarget 2018, 9, 11159–11169. [Google Scholar] [CrossRef]
- Sato, K.; Ando, K.; Okuyama, S.; Moriguchi, S.; Ogura, T.; Totoki, S.; Hanaoka, H.; Nagaya, T.; Kokawa, R.; Takakura, H.; et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent. Sci. 2018, 4, 1559–1569. [Google Scholar] [CrossRef]
- Inagaki, F.F.; Fujimura, D.; Furusawa, A.; Okada, R.; Wakiyama, H.; Kato, T.; Choyke, P.L.; Kobayashi, H. Diagnostic imaging in near-infrared photoimmunotherapy using a commercially available camera for indocyanine green. Cancer Sci. 2021, 112, 1326–1330. [Google Scholar] [CrossRef]
- Takashima, K.; Koga, Y.; Anzai, T.; Migita, K.; Yamaguchi, T.; Ishikawa, A.; Sakashita, S.; Yasunaga, M.; Yano, T. Evaluation of Fluorescence Intensity and Antitumor Effect Using Real-Time Imaging in Photoimmunotherapy. Pharmaceuticals 2022, 15, 223. [Google Scholar] [CrossRef]
- Takashima, H.; Koga, Y.; Tsumura, R.; Yasunaga, M.; Tsuchiya, M.; Inoue, T.; Negishi, E.; Harada, M.; Yoshida, S.; Matsumura, Y. Reinforcement of antitumor effect of micelles containing anticancer drugs by binding of an anti-tissue factor antibody without direct cytocidal effects. J. Control. Release 2020, 323, 138–150. [Google Scholar] [CrossRef]
- Flusberg, B.A.; Cocker, E.D.; Piyawattanametha, W.; Jung, J.C.; Cheung, E.L.; Schnitzer, M.J. Fiber-optic fluorescence imaging. Nat. Methods 2005, 2, 941–950. [Google Scholar] [CrossRef]
- Hughes, M.; Chang, T.P.; Yang, G.-Z. Fiber bundle endocytoscopy. Biomed. Opt. Express 2013, 4, 2781–2794. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.K.; Pleskow, D.K. SpyGlass single-operator peroral cholangiopancreatoscopy system for the diagnosis and therapy of bile-duct disorders: A clinical feasibility study (with video). Gastrointest. Endosc. 2007, 65, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Kundu, B.K.; Liang, Y.; Sun, Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. Adv. Mater. 2024, 36, 2307759. [Google Scholar] [CrossRef] [PubMed]
- Asaithambi, G.; Periasamy, V.; Jebiti, H. Near-infrared fluorogenic receptor for selective detection of cysteine in blood serum and living cells. Anal. Bioanal. Chem. 2021, 413, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.M.; Munusamy, S.; Jothi, D.; Enbanathan, S.; Haribabu, J.; Kulathu Iyer, S. Imidazole-based dual functional chemosensor for the recognition of Cu2+ and CN−: Applications in real water samples and colorimetric test strips. Opt. Mater. 2023, 144, 114382. [Google Scholar] [CrossRef]
Element | Specification |
---|---|
Camera dimensions | 1.0 mm × 1.0 mm × 2.0 mm |
Lens | F2.7 FOV90 deg |
Cable | 2 m |
Pixel size | 2.4 µm × 2.4 µm |
Pixel number | 320 × 320 |
Exposure time | 10-ms |
Gradation | 10-bit |
Bandpass coat | 813–878 nm |
OD, 300–787 nm, 908–1100 nm | ≥4 |
OD, 672–698 nm | ≥6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takamatsu, T.; Tanaka, H.; Yano, T. Near-Infrared Fluorescence Imaging Sensor with Laser Diffuser for Visualizing Photoimmunotherapy Effects under Endoscopy. Sensors 2024, 24, 1487. https://doi.org/10.3390/s24051487
Takamatsu T, Tanaka H, Yano T. Near-Infrared Fluorescence Imaging Sensor with Laser Diffuser for Visualizing Photoimmunotherapy Effects under Endoscopy. Sensors. 2024; 24(5):1487. https://doi.org/10.3390/s24051487
Chicago/Turabian StyleTakamatsu, Toshihiro, Hideki Tanaka, and Tomonori Yano. 2024. "Near-Infrared Fluorescence Imaging Sensor with Laser Diffuser for Visualizing Photoimmunotherapy Effects under Endoscopy" Sensors 24, no. 5: 1487. https://doi.org/10.3390/s24051487
APA StyleTakamatsu, T., Tanaka, H., & Yano, T. (2024). Near-Infrared Fluorescence Imaging Sensor with Laser Diffuser for Visualizing Photoimmunotherapy Effects under Endoscopy. Sensors, 24(5), 1487. https://doi.org/10.3390/s24051487