An Optical Frequency Domain Reflectometer’s (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Data Processing Methods
3. Results and Discussion
4. Conclusions
- Gain additional space in the device frame or make it smaller by eliminating the detector and the analog-to-digital converter associated with it.
- Reduce the cost of the device by using fewer components.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, V.W.S. Internet of Things and Smart Cities. IEEE Commun. Mag. 2021, 59, 4–6. [Google Scholar] [CrossRef]
- Kubik, A. The Use of Artificial Intelligence in the Assessment of User Routes in Shared Mobility Systems in Smart Cities. Smart Cities 2023, 6, 1858–1878. [Google Scholar] [CrossRef]
- Dooley, K. Direct Passive Participation: Aiming for Accuracy and Citizen Safety in the Era of Big Data and the Smart City. Smart Cities 2021, 4, 336–348. [Google Scholar] [CrossRef]
- Channi, H.K.; Kumar, R. The role of smart sensors in smart city. In Smart Sensor Networks. Studies in Big Data; Singh, U., Abraham, A., Kaklauskas, A., Hong, T.P., Eds.; Springer: Cham, Switzerland, 2022; Volume 92. [Google Scholar]
- Kouda, S.; Dibi, Z.; Meddour, F. Modeling of a smart humidity sensor. In Proceedings of the 2008 International Conference on Microelectronics, Sharjah, United Arab Emirates, 14–17 December 2008; pp. 135–138. [Google Scholar]
- Borchi, F.; Governi, L.; Carfagni, M.; Bartalucci, C. Development of a new smart noise monitoring system for a long-term noise control in the cities. J. Acoust. Soc. Am. 2017, 141, 3804. [Google Scholar] [CrossRef]
- Sung, Y.; Lee, S.; Kim, Y.; Park, H. Development of a Smart Air Quality Monitoring System and its Operation. Asian J. Atmos. Environ. 2019, 13, 30–38. [Google Scholar] [CrossRef]
- Shokri, D.; Larouche, C.; Homayouni, S. A Comparative Analysis of Multi-Label Deep Learning Classifiers for Real-Time Vehicle Detection to Support Intelligent Transportation Systems. Smart Cities 2023, 6, 2982–3004. [Google Scholar] [CrossRef]
- Wiesmeyr, C.; Coronel, C.; Litzenberger, M.; Döller, H.J.; Schweiger, H.B.; Calbris, G. Distributed Acoustic Sensing for Vehicle Speed and Traffic Flow Estimation. In Proceedings of the 2021 IEEE International Intel-ligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2596–2601. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Jaber, M.; Chai, K.K.; Loo, J. Distributed Acoustic Sensor Systems for Vehicle Detection and Classification. IEEE Access 2023, 11, 31293–31303. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Yang, C.; Zhang, Z.; Zhang, Y.; Zhang, X. Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements. Sensors 2023, 23, 7116. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wang, Y.; Liang, C.; Fan, J.; Su, X.; Huang, M. A Novel Distributed Optical Fiber Temperature Sensor Based on Raman anti-Stokes Scattering Light. Appl. Sci. 2023, 13, 11214. [Google Scholar] [CrossRef]
- Hartog, A.; Liokumovich, L.; Ushakov, N.; Kotov, O.; Dean, T.; Cuny, T.; Constantinou, A. The Use of Multi-frequency Acquisition to Significantly Improve the Quality of Fibre-optic Distributed Vibration Sensing. In Proceedings of the 78th EAGE Conference and Exhibition 2016, Online, 30 May–2 June 2016. [Google Scholar]
- Ushakov, N.A.; Liokumovich, L.B. Comparison of Time and Frequency Approaches to Simulation of Signals of Optical Rayleigh Reflectometers. Instrum. Exp. Tech. 2023, 66, 809–816. [Google Scholar] [CrossRef]
- Chernutsky, A.O.; Khan, R.I.; Gritsenko, T.V.; Koshelev, K.I.; Zhirnov, A.A.; Pnev, A.B. Active Thermostatting of the Reference Optical Fiber Section Method in a Distributed Fiber-Optical Temperature Sensor. Instrum. Exp. Tech. 2023, 66, 824–831. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Szostkiewicz, L.; Markiewicz, K.; Mikhailov, S.; Geernaert, T.; Rochat, E.; Thévenaz, L. Long-distance distributed pressure sensing based on frequency-scanned phase-sensitive optical time-domain reflectometry. Opt. Express 2021, 29, 20487–20497. [Google Scholar] [CrossRef] [PubMed]
- Höttges, A.; Rabaiotti, C.; Facchini, M. A Novel Distributed Fiber-Optic Hydrostatic Pressure Sensor for Dike Safety Monitoring. IEEE Sens. J. 2023, 23, 28942–28953. [Google Scholar] [CrossRef]
- Zhai, L.; Huang, Y.; Qiao, J.; Xu, B.; Jin, N. Measurement of gas holdup in slug region of horizontal oil-gas-water three-phase flow by a distributed ultrasonic sensor. IEEE Sens. J. 2023, 24, 2547–2557. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Chesnokov, G.Y.; Stepanov, K.V.; Gritsenko, T.V.; Khan, R.I.; Koshelev, K.I.; Chernutsky, A.O.; Svelto, C.; Pnev, A.B.; Valba, O.V. Fiber-Optic Telecommunication Network Wells Monitoring by Phase-Sensitive Optical Time-Domain Reflectometer with Disturbance Recognition. Sensors 2023, 23, 4978. [Google Scholar] [CrossRef]
- Butov, O.V.; Chamorovskii, Y.K.; Golant, K.M.; Fotiadi, A.A.; Jason, J.; Popov, S.M.; Wuilpart, M. Sensitivity of high Rayleigh scattering fiber in acoustic/vibration sensing using phase-OTDR. In Proceedings of the Optical Sensing and Detection V, SPIE, Strasbourg, France, 9 May 2018; p. 106801. [Google Scholar]
- Matveenko, V.; Serovaev, G. Distributed Strain Measurements Based on Rayleigh Scattering in the Presence of Fiber Bragg Gratings in an Optical Fiber. Photonics 2023, 10, 868. [Google Scholar] [CrossRef]
- Krivosheev, A.I.; Barkov, F.L.; Konstantinov, Y.A.; Belokrylov, M.E. State-of-the-Art Methods for Determining the Frequency Shift of Brillouin Scattering in Fiber-Optic Metrology and Sensing (Review). Instrum. Exp. Tech. 2022, 65, 687–710. [Google Scholar] [CrossRef]
- Liang, C.; Bai, Q.; Yan, M.; Wang, Y.; Zhang, H.; Jin, B. A Comprehensive Study of Optical Frequency Domain Reflectometry. IEEE Access 2021, 9, 41647–41668. [Google Scholar] [CrossRef]
- Yuksel, K.; Wuilpart, M.; Moeyaert, V.; Mégret, P. Optical Frequency Domain Reflectometry: A Review. In Proceedings of the 11th International Conference on Transparent Optical Networks, Azores, Portugal, 28 June–2 July 2009. [Google Scholar]
- Qu, S.; Xu, Y.; Huang, S.; Sun, M.; Wang, C.; Shang, Y. Recent Advancements in Optical Frequency-Domain Reflectometry: A Review. IEEE Sens. J. 2022, 23, 1707–1723. [Google Scholar] [CrossRef]
- Poddubrovskii, N.R.; Lobach, I.A.; Kablukov, S.I. Signal Processing in Optical Frequency Domain Reflectometry Systems Based on Self-Sweeping Fiber Laser with Continuous-Wave Intensity Dynamics. Algorithms 2023, 16, 260. [Google Scholar] [CrossRef]
- Tkachenko, A.Y.; Smolyaninov, N.N.; Skvortsov, M.I.; Lobach, I.A.; Kablukov, S.I. A Coherent Optical Frequency-Domain Reflectometer Based on a Self-Sweeping Fiber Laser for Sensing Applications. Instrum. Exp. Tech. 2020, 63, 532–537. [Google Scholar] [CrossRef]
- Tkachenko, A.Y.; Lobach, I.A.; Kablukov, S.I. Optical Frequency Reflectometer Based on Self-Scanning Fiber Laser for Measurement of Rayleigh Scattering. In Proceedings of the All-Russian Conference on Fiber Optics, Perm, Russia, 3–6 October 2023; pp. 280–281. [Google Scholar]
- Belokrylov, M.E.; Claude, D.; Konstantinov, Y.A.; Karnaushkin, P.V.; Ovchinnikov, K.A.; Krishtop, V.V.; Gilev, D.G.; Barkov, F.L.; Ponomarev, R.S. Method for Increasing the Signal-to-Noise Ratio of Rayleigh Back-Scattered Radiation Registered by a Frequency Domain Optical Reflectometer Using Two-Stage Erbium Amplification. Instrum. Exp. Tech. 2023, 66, 761–768. [Google Scholar] [CrossRef]
- Yao, Z.; Mauldin, T.; Xu, Z.; Hefferman, G.; Wei, T. Compact multifunction digital OFDR system without using an auxiliary interferometer. Appl. Opt. 2021, 60, 7523–7529. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, Y.; Wang, F.; Feng, K.; Zhang, Y.; Yan, Z.; Zhang, X. A Method Based on Time-Scale Factor for Correcting the Nonlinear Frequency Sweeping in an OFDR System. IEEE Photon. J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Zhao, S.; Cui, J.; Tan, J. Nonlinearity Correction in OFDR System Using a Zero-Crossing Detection-Based Clock and Self-Reference. Sensors 2019, 19, 3660. [Google Scholar] [CrossRef]
- Guo, Z.; Han, G.; Yan, J.; Greenwood, D.; Marco, J.; Yu, Y. Ultimate Spatial Resolution Realisation in Optical Frequency Domain Reflectometry with Equal Frequency Resampling. Sensors 2021, 21, 4632. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, K.A.; Gilev, D.G.; Krishtop, V.V.; Drozdov, I.R.; Konstantinov, Y.A.; Belokrylov, M.E.; Turov, A.T.; Barkov, F.L. Application of Optical Frequency Domain Reflectometry for the Study of Polarization Maintaining Fibers. Bull. Russ. Acad. Sci. Phys. 2022, 86, S156–S162. [Google Scholar] [CrossRef]
- Gazi, O. Fourier analysis of digital signals. In Principles of Signals and Systems; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, P.; Wang, Y.; Liu, X.; Bai, Q.; Li, P.; Zhang, H.; Gao, Y.; Jin, B. Eliminating Phase Drift for Distributed Optical Fiber Acoustic Sensing System with Empirical Mode Decomposition. Sensors 2019, 19, 5392. [Google Scholar] [CrossRef]
- Deng, Z.; Wan, A.; Xu, R.; Wang, Y.; Jiang, J.; Wang, Z. Quasi-Distributed Acoustic Sensing Based on Orthogonal Codes and Empirical Mode Decomposition. IEEE Sens. J. 2023, 23, 24591–24600. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, Z.; Li, Y.; Shao, D.; Wu, Y. Ensemble empirical mode decomposition and stacking model for filtering borehole distributed acoustic sensing records. Geophysics 2023, 88, WA319–WA334. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.-Y.; Qiao, F.-L.; Wu, Z.; Huang, N.E. On Intrinsic Mode Function. Adv. Adapt. Data Anal. 2010, 2, 277–293. [Google Scholar] [CrossRef]
- Marcon, L.; Galtarossa, A.; Palmieri, L. High-frequency high-resolution distributed acoustic sensing by optical frequency domain reflectometry. Opt. Express 2019, 27, 13923–13933. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, K.; Pala, D. Analytical investigation of a novel interrogation approach of fiber Bragg grating sensors using Optical Frequency Domain Reflectometry. Opt. Lasers Eng. 2016, 81, 119–124. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, L.; Chamorovskii, Y.K.; Popov, S.M.; Butov, O.V.; Wen, Y. A temperature compensation method of FBG based on OFDR fiber sensing system. In Proceedings of the Conference on Lasers and Electro-Optics, Technical Digest Series, paper JW3B.55. San Jose, CA, USA, 15–20 May 2022; Optica Publishing Group: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
FF | EMD11 | EMD12 | ||||||
---|---|---|---|---|---|---|---|---|
Position, mm | BR Power, dB | Width, mm | Position, mm | BR Power, dB | Width, mm | Position, mm | BR Power, dB | Width, mm |
51,326.1847 | 62.1977 | 1.1397 | 51,326.1254 | 62.7202 | 1.1016 | 51,326.1254 | 62.7217 | 1.1016 |
51,326.3167 | 64.1563 | 0.8903 | 51,326.2354 | 63.9899 | 0.9309 | 51,326.2354 | 63.9928 | 0.9309 |
51,326.2067 | 62.2726 | 1.1395 | 51,326.1914 | 62.2502 | 1.0967 | 51,326.1914 | 62.2536 | 1.0967 |
51,326.0594 | 64.8218 | 0.8906 | 51,326.1627 | 65.0560 | 0.8502 | 51,326.1627 | 65.0576 | 0.8502 |
51,326.1627 | 63.5432 | 0.9309 | 51,326.2794 | 63.3216 | 1.1411 | 51,326.3234 | 63.7181 | 0.9307 |
51,326.3014 | 61.9731 | 1.0972 | 51,326.2067 | 61.8234 | 1.0602 | 51,326.2354 | 61.9560 | 1.0975 |
51,326.3014 | 65.4454 | 0.8518 | 51,326.3167 | 63.4212 | 1.2297 | 51,326.3607 | 65.1750 | 0.9303 |
51,326.3387 | 62.9421 | 1.0993 | 51,325.9054 | 62.2549 | 1.0578 | 51,325.9054 | 62.2577 | 1.0578 |
51,326.3454 | 64.6821 | 0.8912 | 51,326.3454 | 64.7004 | 0.8913 | 51,326.3454 | 64.7022 | 0.8913 |
51,326.2794 | 65.0058 | 0.8505 | 51,326.1407 | 64.3986 | 0.8507 | 51,326.1407 | 64.4002 | 0.8507 |
51,326.0527 | 63.3924 | 1.0203 | 51,326.1254 | 63.0790 | 1.0588 | 51,326.1254 | 63.0813 | 1.0589 |
PCHIP | woAUX | woGC | ||||||
---|---|---|---|---|---|---|---|---|
Position, mm | BR Power, dB | Width, mm | Position, mm | BR Power, dB | Width, mm | Position, mm | BR Power, dB | Width, mm |
51,326.3827 | 62.0417 | 1.0606 | 50,175.8570 | 36.8398 | 2372.2929 | 51,222.6125 | 66.0418 | 1.4402 |
51,326.5654 | 64.2049 | 0.8505 | 50,276.2650 | 37.1411 | 2321.6339 | 51,230.5545 | 65.5999 | 1.3163 |
51,326.2067 | 62.2920 | 1.1794 | 50,810.6889 | 36.8970 | 3293.5291 | 51,236.6045 | 62.2696 | 1.6055 |
51,325.6567 | 65.0999 | 0.8900 | 51,025.1229 | 37.3712 | 3582.0933 | 51,235.9445 | 65.5210 | 1.3092 |
51,326.1914 | 63.8136 | 0.9305 | 51,141.3929 | 37.1861 | 3798.1979 | 51,239.1125 | 66.2181 | 1.3153 |
51,326.2067 | 62.1008 | 1.0962 | 51,259.1809 | 36.9247 | 4016.6688 | 51,241.0925 | 62.9372 | 1.9337 |
51,326.7194 | 65.1899 | 0.9304 | 51,004.4649 | 37.4301 | 3615.8351 | 51,223.2065 | 66.2919 | 1.2677 |
51,325.8987 | 62.9632 | 1.0994 | 50,940.7529 | 36.8228 | 3557.9447 | 51,226.7265 | 64.8821 | 1.4777 |
51,326.3674 | 64.2325 | 0.9707 | 50,947.9029 | 37.0939 | 3534.0229 | 51,228.6405 | 67.0267 | 1.2723 |
51,326.1407 | 63.7534 | 1.0924 | 50,821.9529 | 36.4771 | 3468.5312 | 51,221.8865 | 67.5454 | 1.1477 |
51,325.7734 | 63.3411 | 1.0202 | 50,510.8069 | 36.8486 | 2857.7540 | 51,233.8105 | 66.4518 | 1.3157 |
Decomposition Method | Precision, mm | Width, mm | BR Power, dB | Computation Time, s |
---|---|---|---|---|
DF | 0.106 | 0.982 | 63.676 | 40 |
EMD11 | 0.119 | 1.024 | 63.365 | 18 |
EMD12 | 0.129 | 0.982 | 63.574 | 18 |
PCHIP | 0.322 | 1.011 | 63.548 | 20 |
woAUX | 347.629 | 3310.773 | 37.003 | N/A |
woGC | 6.852 | 1.400 | 65.526 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belokrylov, M.E.; Kambur, D.A.; Konstantinov, Y.A.; Claude, D.; Barkov, F.L. An Optical Frequency Domain Reflectometer’s (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing. Sensors 2024, 24, 1253. https://doi.org/10.3390/s24041253
Belokrylov ME, Kambur DA, Konstantinov YA, Claude D, Barkov FL. An Optical Frequency Domain Reflectometer’s (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing. Sensors. 2024; 24(4):1253. https://doi.org/10.3390/s24041253
Chicago/Turabian StyleBelokrylov, Maxim E., Dmitry A. Kambur, Yuri A. Konstantinov, D Claude, and Fedor L. Barkov. 2024. "An Optical Frequency Domain Reflectometer’s (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing" Sensors 24, no. 4: 1253. https://doi.org/10.3390/s24041253