A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum
Abstract
:1. Introduction
2. Design and Analysis
2.1. Configuration of the Proposed Antenna
2.2. Working Mechanism
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thidé, H.; Then, J.; Sjöholm, K.; Palmer, J.; Bergman, T.D.; Carozzi, Y.N.; Istomin, N.H. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 2007, 99, 9892–9905. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.C.; Sun, S. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. New dimension in vortex electro-magnetic wave transmission with orbital angular momentum. J. Commun. 2022, 43, 211–222. [Google Scholar]
- Wang, Y.; Sun, X.; Liu, L. Millimeter-Wave Orbital Angular Momentum: Generation, Detection, and Applications: A Review on Millimeter Wave Orbital Angular Momentum Antennas. IEEE Microw. Mag. 2024, 25, 37–57. [Google Scholar] [CrossRef]
- Guo, C.; Zhao, X.; Zhu, C. An OAM patch antenna design and its array for higher order OAM mode generation. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 816–820. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Zhu, J. Constructing dual-frequency OAM circular patch antenna using characteristic mode theory. J. Appl. Phys. 2019, 126, 064501. [Google Scholar] [CrossRef]
- Li, Y.-L.; Luk, K.-M. A low-divergence circularly polarized dual-mode OAM antenna based on higher order Laguerre–Gaussian modes. IEEE Trans. Antennas Propag. 2021, 69, 5215–5223. [Google Scholar] [CrossRef]
- An, C.; Lei, J.; Li, W. Generation of OAM beams using circular ring array with in-phase feed. IEEE Trans. Antennas Propag. 2023, 71, 7028–7038. [Google Scholar] [CrossRef]
- Yin, Z.; Zheng, Q.; Guo, K. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array. Appl. Sci. 2019, 9, 2949. [Google Scholar] [CrossRef]
- Yu, S.; Kou, N.; Jiang, J. Beam steering of orbital angular momentum vortex waves with spherical conformal array. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1244–1248. [Google Scholar] [CrossRef]
- Lee, I.; Sawant, A.; Choi, E. High-Directivity Orbital Angular Momentum Antenna for Millimeter-Wave Wireless Communications. IEEE Trans. Antennas Propag. 2021, 69, 4189–4194. [Google Scholar] [CrossRef]
- Yi, J.; Li, D.; Feng, R. Design and validation of a meta-surface lens for converging vortex beams. Appl. Phys. Express 2019, 18, 084501. [Google Scholar] [CrossRef]
- Liu, B.; Wong, S.W.; Tam, K.W. Multi-functional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics. IEEE Trans. Antennas Propag. 2021, 70, 1068–1076. [Google Scholar] [CrossRef]
- Hui, X.; Zheng, S.; Hu, Y.; Xu, C.; Jin, X.; Chi, H.; Zhang, X. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 966–969. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, S. Orbital Angular Momentum (OAM) Generation by Cylinder Dielectric Resonator Antenna for Future Wireless Communications. IEEE Access 2017, 4, 9570–9574. [Google Scholar] [CrossRef]
- Yi, Z.; Tian, S. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Electron. Lett. 2019, 55, 875–876. [Google Scholar] [CrossRef]
- Wu, G.-B.; Chan, K.F.; Shum, K.M.; Chan, C.H. Millimeter-wave holographic flat Llns antenna for orbital angular momentum multiplexing. IEEE Trans. Antennas Propag. 2021, 69, 4289–4303. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Z.; Fang, X. A waveguide slot filtering antenna with an embedded meta-material structure. IEEE Trans. Antennas Propag. 2019, 67, 2953–2960. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Z.; Ren, X.; Wei, E.I.; Wu, X. Wideband millimeter-wave dual-mode dual circularly polarized OAM antenna using sequentially rotated feeding technique. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1296–1300. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Shen, D. Design of substrate integrated gap waveguide. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 24–26 May 2016; pp. 1–3. [Google Scholar]
- Shen, D.; Ma, C.; Ren, W. A low-profile substrate-integrated-gap-waveguide-fed magnetoelectric dipole. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1373–1376. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Kishk, A.A. Broadband 60 GHz antennas fed by substrate integrated gap waveguides. IEEE Trans. Antennas Propag. 2018, 66, 3261–3270. [Google Scholar] [CrossRef]
- Ma, C.; Ma, Z.H.; Zhang, X. Millimeter-wave circularly polarized array antenna using substrate-integrated gap waveguide sequentially rotating phase feed. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1124–1128. [Google Scholar] [CrossRef]
- Wang, L.; Shen, D. An ISGW filtering antenna with spurious modes and surface wave suppression for millimeter wave communications. China Commun. 2023, 11, 1–12. [Google Scholar] [CrossRef]
- Lin, Q.H. Research on Integrated Substrate Gap Waveguide Millimeter-Wave Multi-Band Filtering and Antenna; Yunnan University: Kunming, China, 2022. [Google Scholar]
- Lin, Q.H.; Shen, D. An mm-wave dual-band integrated substrate gap waveguide single cavity filter with frequency selectivity. China Commun. 2024, 21, 188–199. [Google Scholar]
- Luukkonen, O.; Silveirinha, M.G.; Yakovlev, A.B. Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces. IEEE Trans. Microw. Theory Tech. 2009, 57, 2692–2699. [Google Scholar] [CrossRef]
- Lin, Q.H.; Shen, D.; Ma, Z. A Stopband-improved dual-band bandpass defect cavity filter using a multi-mode ISGW cavity. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
Parameters | ||||||
Values | 5.40 | 0.50 | 0.30 | 0.15 | 0.90 | 1.05 |
Parameters | ||||||
Values | 1.0 | 1.0 | 3.0 | 1.25 | 0.9 | 1.25 |
Parameters | ||||||
---|---|---|---|---|---|---|
Values | 0.254 | 0.813 | 6 | 0.76 | 15.76 | 1.26 |
Ref. | Tech. | (GHz) | FBW (%) | Gain (dBi) | Modes | Size (x,y,z) · |
---|---|---|---|---|---|---|
[5] | Pat. | 2.4 | 2.92 | – | CP–OAM | >(0.6,0.6,0.01) |
[8] | Pat.-arr. | 10.7 | 2.80 | 6.05 | OAM | >(2.5,2.5,0.07) |
[9] | Pat.-arr. | 300 | 6.67 | 2 | OAM | (7.0,7.0,0.05) |
[11] | Meta-sur. | 83.5 | 5.99 | – | OAM | >(8.3,8.3,–) |
[13] | Meta-sur. | 10 | 10 | 13.9 | LP, OAM | (10.0,10.0,2.5) |
[14] | Meta-sur. | 59 | 3.39 | 14.6 | OAM | (–,–,–) |
[18] | GW | 5.5 | 7.27 | 12.2 | LP | (3.5,0.7,0.28) |
[7] | SIW | 13 | 15.38 | 13 | CP–OAM | (4.8,5.2,1.1) |
[17] | SIW | 60 | 26.1 | 16 | CP–OAM | (1.38,1.38,0.15) |
[19] | SIW | 31 | 3.23 | >11.4 | CP–OAM | (8.2,5.4,0.16) |
[22] | SIGW | 60 | 35 | 5.1 | CP | >(1.4,2.0,0.2) |
[24] | SIGW | 25 | 8.4 | 8.5 | LP | (1.5,1.58,0.8) |
Pro. | SIGW | 28 | 35.7 | 8.04 | L/CHP, CP–OAM | (1.5,1.4,0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.-H.; Hou, D.; Wang, L.; Chen, P.; Luo, Z. A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum. Sensors 2024, 24, 1184. https://doi.org/10.3390/s24041184
Lin Q-H, Hou D, Wang L, Chen P, Luo Z. A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum. Sensors. 2024; 24(4):1184. https://doi.org/10.3390/s24041184
Chicago/Turabian StyleLin, Qiu-Hua, Da Hou, Lihui Wang, Pengpeng Chen, and Zhiyong Luo. 2024. "A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum" Sensors 24, no. 4: 1184. https://doi.org/10.3390/s24041184
APA StyleLin, Q.-H., Hou, D., Wang, L., Chen, P., & Luo, Z. (2024). A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum. Sensors, 24(4), 1184. https://doi.org/10.3390/s24041184