Deeply Implanted Conformal Antenna for Real-Time Bio-Telemetry Applications
Abstract
:1. Introduction
2. Methods
2.1. Geometries of the Implant, Dielectric Layer, and Bone
2.2. The Simulation Environment
2.3. Prototyping
2.3.1. D Printing
2.3.2. Preparation of the Antenna Sample
2.4. Experimental Set-Ups
3. Results and Discussion
3.1. Measurement of the Dielectric Characteristics of the Tissue-like Liquid
3.2. Measurement of the Antenna Matching
3.3. Measurement of the Antenna Gain and RP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Basir, A.; Nedil, M.; Yoo, H. Biotelemetry and Wireless Powering of Biomedical Implants Using a Rectifier Integrated Self-Diplexing Implantable Antenna. IEEE Trans. Microw. Theory Tech. 2021, 69, 3438–3451. [Google Scholar] [CrossRef]
- Agarwal, K.; Jegadeesan, R.; Guo, Y.X.; Thakor, N.V. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Rev. Biomed. Eng. 2017, 10, 136–161. [Google Scholar] [CrossRef]
- Nikolayev, D.; Skrivervik, A.K.; Ho, J.S.; Zhadobov, M.; Sauleau, R. Reconfigurable Dual-Band Capsule-Conformal Antenna Array for In-Body Bioelectronics. IEEE Trans. Antennas Propag. 2022, 70, 3749–3761. [Google Scholar] [CrossRef]
- Srivastava, A.; Das, D.; Vignesh, M.S.; Bharadwaj, K.; Dewan, S.; Baghini, M.S. Bio-telemetry and bio-instrumentation technologies for healthcare monitoring systems. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Kiourti, A.; Abbosh, A.M.; Athanasiou, M.; Björninen, T.; Eid, A.; Furse, C.; Ito, K.; Lazzi, G.; Manoufali, M.; Pastorino, M.; et al. Next-Generation Healthcare: Enabling Technologies for Emerging Bioelectromagnetics Applications. IEEE Open J. Antennas Propag. 2022, 3, 363–390. [Google Scholar] [CrossRef]
- Rajagopalan, H.; Rahmat-Samii, Y. Wireless Medical Telemetry Characterization for Ingestible Capsule Antenna Designs. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1679–1682. [Google Scholar] [CrossRef]
- Tang, Z.; Smith, B.; Schild, J.; Peckham, P. Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 1995, 42, 524–528. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, G.K.; Kaur, G. Implantable Antennas in Biomedical Applications. In Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India, 12–14 December 2015; pp. 25–29. [Google Scholar] [CrossRef]
- Chow, E.; Morris, M.; Irazoqui, P. Implantable RF Medical Devices: The Benefits of High-Speed Communication and Much Greater Communication Distances in Biomedical Applications. IEEE Microw. Mag. 2013, 14, 64–73. [Google Scholar] [CrossRef]
- Basir, A.; Yoo, H. A Stable Impedance-Matched Ultrawideband Antenna System Mitigating Detuning Effects for Multiple Biotelemetric Applications. IEEE Trans. Antennas Propag. 2019, 67, 3416–3421. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wu, Z.T.; Fan, Y.; Tentzeris, E.M. A Miniaturized CSRR Loaded Wide-Beamwidth Circularly Polarized Implantable Antenna for Subcutaneous Real-Time Glucose Monitoring. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 577–580. [Google Scholar] [CrossRef]
- Mostaccio, A.; Occhiuzzi, C.; Giofrè, R.; Colantonio, P.; Marrocco, G. Ultra Low Power Wireless Epidermal Sensor for Battery-less pH monitoring in the sub-6 GHz 5G band. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Buchegger, T.; Oßberger, G.; Reisenzahn, A.; Hochmair, E.; Stelzer, A.; Springer, A. Ultra-Wideband Transceivers for Cochlear Implants. EURASIP J. Adv. Signal Process 2005, 2005, 3069–3075. [Google Scholar] [CrossRef]
- Gosalia, K.; Brown, P.; Liu, W.; Lazzi, G. FDTD investigation of a microwave link for data telemetry in retinal prosthesis applications. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), San Antonio, TX, USA, 16–21 June 2002; Volume 1, pp. 807–810. [Google Scholar] [CrossRef]
- Sharma, D.; Kanaujia, B.K.; Kaim, V.; Mittra, R.; Arya, R.K.; Matekovits, L. Design and implementation of compact dual-band conformal antenna for leadless cardiac pacemaker system. Sci. Rep. 2022, 12, 3165. [Google Scholar] [CrossRef]
- Venkatalakshmi, B.; Julian, A.; Nithila, K. Design of novel antenna for implantable bio-device. In Proceedings of the 2013 IEEE Conference on Information Communication Technologies, Thuckalay, India, 11–12 April 2013; pp. 928–931. [Google Scholar] [CrossRef]
- Available online: https://www.itu.int/rec/R-REC-SA.1346-0-199802-S/en (accessed on 24 June 2022).
- Soontornpipit, P.; Furse, C.; Chung, Y.C. Design of implantable microstrip antenna for communication with medical implants. IEEE Trans. Microw. Theory Tech. 2004, 52, 1944–1951. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K.S. A Review of Implantable Patch Antennas for Biomedical Telemetry: Challenges and Solutions [Wireless Corner]. IEEE Antennas Propag. Mag. 2012, 54, 210–228. [Google Scholar] [CrossRef]
- Beheshtizadeh, N.; Azami, M.; Abbasi, H.; Farzin, A. Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J. Adv. Res. 2022, 40, 69–94. [Google Scholar] [CrossRef]
- Zhekov, S.S.; Franek, O.; Pedersen, G.F. Dielectric Properties of Common Building Materials for Ultrawideband Propagation Studies [Measurements Corner]. IEEE Antennas Propag. Mag. 2020, 62, 72–81. [Google Scholar] [CrossRef]
- Strnad, G.; Jakab-Farkas, L.; Gobber, F.S.; Peter, I. Synthesis and Characterization of Nanostructured Oxide Layers on Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe Biomedical Alloys. J. Funct. Biomater. 2023, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Guo, Y.X.; Je, M.; Kwong, D.L. Design and in Vitro Test of a Differentially Fed Dual-Band Implantable Antenna Operating at MICS and ISM Bands. IEEE Trans. Antennas Propag. 2014, 62, 2430–2439. [Google Scholar] [CrossRef]
- Malik, N.A.; Sant, P.; Ajmal, T.; Ur-Rehman, M. Implantable Antennas for Bio-Medical Applications. IEEE J. Electromag-Netics RF Microw. Med. Biol. 2021, 5, 84–96. [Google Scholar] [CrossRef]
- Mohamed, K.R.; Beherei, H.H.; El-Rashidy, Z.M. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J. Adv. Res. 2014, 5, 201–208. [Google Scholar] [CrossRef] [PubMed]
- El-Maghraby, H.F.; Greish, Y.E. Preparation, Structural Characterization, and Biomedical Applications of Gypsum-Based Nanocomposite Bone Cements. In Novel Nanomaterials; Krishnamoorthy, K., Ed.; IntechOpen: Rijeka, Croatia, 2021; chapter 13. [Google Scholar] [CrossRef]
- Guido, K.; Matos, C.; Ramsey, J.; Kiourti, A. Tissue-Emulating Phantoms for In Vitro Experimentation at Radio Frequencies: Exploring characteristics, fabrication, and testing methods. IEEE Antennas Propag. Mag. 2021, 63, 29–39. [Google Scholar] [CrossRef]
- Green, R.B.; Smith, M.V.; Topsakal, E. In Vitro and In Vivo Testing of Implantable Antennas. In Antenna and Sensor Technologies in Modern Medical Applications; Wiley-IEEE Press: New York, NY, USA, 2021; pp. 145–189. [Google Scholar] [CrossRef]
- Matekovits, L.; Huang, J.; Peter, I.; Esselle, K.P. Mutual Coupling Reduction Between Implanted Microstrip Antennas on a Cylindrical Bio-Metallic Ground Plane. IEEE Access 2017, 5, 8804–8811. [Google Scholar] [CrossRef]
- Matekovits, L.; Su, Y.; Peter, I. On the radiation mechanism of implanted antennas with large conformal ground plane. IET Microw. Antennas Propag. 2017, 11, 1765–1769. [Google Scholar] [CrossRef]
- Alrawashdeh, R.; Huang, Y.; Sajak, A.A.B. A flexible loop antenna for biomedical bone implants. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 861–864. [Google Scholar] [CrossRef]
- O’connor, C.; Kiourti, A. Wireless Sensors for Smart Orthopedic Implants. J. Bio-Tribo-Corros. 2017, 3, 20. [Google Scholar] [CrossRef]
- Lodato, R.; Marrocco, G. Close Integration of a UHF-RFID Transponder into a Limb Prosthesis for Tracking and Sensing. IEEE Sens. J. 2015, 16, 1806–1813. [Google Scholar] [CrossRef]
- Qiblawey, Y.; Chowdhury, M.E.H.; Musharavati, F.; Zalnezhad, E.; Khandakar, A.; Islam, M.T. Instrumented Hip Implant: A Review. IEEE Sens. J. 2020, 21, 7179–7194. [Google Scholar] [CrossRef]
- Li, J.; Peter, I.; Matekovits, L. Circularly polarized implanted antenna with conical bio-metallic ground plane. In Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, 20–21 February 2017; pp. 265–269. [Google Scholar] [CrossRef]
- Peter, I. Investigations into Ti-Based Metallic Alloys for Biomedical Purposes. Metals 2021, 11, 1626. [Google Scholar] [CrossRef]
- Revitan-Straight-Revision-Hip-System Catalogue. Available online: https://www.zimmerbiomet.com/en (accessed on 24 June 2022).
- CST, v. 2021. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed on 24 June 2022).
- Karacolak, T.; Hood, A.Z.; Topsakal, E. Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring. IEEE Trans. Microw. Theory Tech. 2008, 56, 1001–1008. [Google Scholar] [CrossRef]
- Bicer, A.; Kar, F. Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Therm. Sci. Eng. Prog. 2017, 1, 59–65. [Google Scholar] [CrossRef]
- Descardeci, J.; Giarola, A. Microstrip antenna on a conical surface. IEEE Trans. Antennas Propag. 1992, 40, 460–463. [Google Scholar] [CrossRef]
- Shavit, R. Circular polarization microstrip antenna on a conical surface. IEEE Trans. Antennas Propag. 1997, 45, 1086–1092. [Google Scholar] [CrossRef]
Tissue | Material | Radial Extension | Length | Rel. Diel. |
---|---|---|---|---|
(mm) | (mm) | Constant | ||
Skin–Fat | Plastic-1 | 200–203 | 257 | 2.2 |
Muscle | Liquid | 15–200 | 257 | 52.7–54.5, σ = 1.7–1.85 |
Bone | Plastic-2 | 15 | 200 | 3.4 |
Dielectric | Gypsum | top: 11.5–12.5 bottom: 6.5 4–7.5 | 140 | 2.7 |
Implant | PEC | top: 11.5/bottom: 6.5 | 140 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matekovits, L.; Mir, F.; Dassano, G.; Peter, I. Deeply Implanted Conformal Antenna for Real-Time Bio-Telemetry Applications. Sensors 2024, 24, 1170. https://doi.org/10.3390/s24041170
Matekovits L, Mir F, Dassano G, Peter I. Deeply Implanted Conformal Antenna for Real-Time Bio-Telemetry Applications. Sensors. 2024; 24(4):1170. https://doi.org/10.3390/s24041170
Chicago/Turabian StyleMatekovits, Ladislau, Farzad Mir, Gianluca Dassano, and Ildiko Peter. 2024. "Deeply Implanted Conformal Antenna for Real-Time Bio-Telemetry Applications" Sensors 24, no. 4: 1170. https://doi.org/10.3390/s24041170
APA StyleMatekovits, L., Mir, F., Dassano, G., & Peter, I. (2024). Deeply Implanted Conformal Antenna for Real-Time Bio-Telemetry Applications. Sensors, 24(4), 1170. https://doi.org/10.3390/s24041170