Relationship between Car-Sickness Susceptibility and Postural Activity: Could the Re-Weighting Strategy between Signals from Different Body Sensors Be an Underlying Factor?
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Procedure
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Relation between Car-Sickness Susceptibility and Energy Ratios in Phases of Transition
3.2. Postural Differences between Subjects with High and Low Sensitivity
3.3. Postural Differences between Women and Men: A Complementary Analysis
4. Discussion
4.1. Sensory Re-Weighting as a Potential Predictor of Car-Sickness Susceptibility
4.2. Sex Differences in Susceptibility to Car-Sickness
4.3. Relevance of the Car-Sickness Questionnaire
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laboissière, R.; Letievant, J.C.; Ionescu, E.; Barraud, P.A.; Mazzuca, M.; Cian, C. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility. PLoS ONE 2015, 10, e0144466. [Google Scholar] [CrossRef]
- Weech, S.; Varghese, J.P.; Barnett-Cowan, M. Estimating the sensorimotor components of cybersickness. J. Neurophysiol. 2018, 120, 2201–2217. [Google Scholar] [CrossRef]
- Stoffregen, T.A.; Chen, F.C.; Varlet, M.; Alcantara, C.; Bardy, B.G. Getting Your Sea Legs. PLoS ONE 2013, 8, e66949. [Google Scholar] [CrossRef] [PubMed]
- Dida, M.; Cian, C.; Barraud, P.A.; Guerraz, M.; Laboissière, R. Idiosyncratic multisensory reweighting as the common cause for motion sickness susceptibility and adaptation to postural perturbation. PLoS ONE 2021, 16, e0260863. [Google Scholar] [CrossRef] [PubMed]
- Tal, D.; Bar, R.; Nachum, Z.; Gil, A.; Shupak, A. Postural dynamics and habituation to seasickness. Neurosci. Lett. 2010, 479, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Nachum, Z.; Shupak, A.; Letichevsky, V.; Ben-David, J.; Tal, D.; Tamir, A.; Talmon, Y.; Gordon, C.R.; Luntz, M. Mal de débarquement and posture: Reduced reliance on vestibular and visual cues. Laryngoscope 2004, 114, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Nashner, L.; Berthoz, A. Visual contribution to rapid motor responses during postural control. Brain Res. 1978, 150, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Assländer, L.; Peterka, R.J. Sensory reweighting dynamics in human postural control. J. Neurophysiol. 2014, 111, 1852–1864. [Google Scholar] [CrossRef] [PubMed]
- Carver, S.; Kiemel, T.; Jeka, J.J. Modeling the dynamics of sensory reweighting. Biol. Cybern. 2006, 95, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Day, B.L.; Guerraz, M.; Cole, J. Sensory interactions for human balance control revealed by galvanic vestibular stimulation. In Sensorimotor Control of Movement and Posture; Springer: Berlin/Heidelberg, Germany, 2002; pp. 129–137. [Google Scholar] [CrossRef]
- Day, B.L.; Guerraz, M. Feedforward versus feedback modulation of human vestibular-evoked balance responses by visual self-motion information. J. Physiol. 2007, 582, 153–161. [Google Scholar] [CrossRef]
- Jeka, J.J.; Oie, K.S.; Kiemel, T. Asymmetric adaptation with functional advantage in human sensorimotor control. Exp. Brain Res. 2008, 191, 453–463. [Google Scholar] [CrossRef]
- Mahboobin, A.; Loughlin, P.; Atkeson, C.; Redfern, M. A mechanism for sensory re-weighting in postural control. Med. Biol. Eng. Comput. 2009, 47, 921–929. [Google Scholar] [CrossRef]
- Maurer, C.; Mergner, T.; Peterka, R.J. Multisensory control of human upright stance. Exp. Brain Res. 2005, 171, 231. [Google Scholar] [CrossRef] [PubMed]
- Oie, K.S.; Kiemel, T.; Jeka, J.J. Multisensory fusion: Simultaneous re-weighting of vision and touch for the control of human posture. Cogn. Brain Res. 2002, 14, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J.; Loughlin, P.J. Dynamic regulation of sensorimotor integration in human postural control. J. Neurophysiol. 2004, 91, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Polastri, P.F.; Barela, J.A.; Kiemel, T.; Jeka, J.J. Dynamics of inter-modality re-weighting during human postural control. Exp. Brain Res. 2012, 223, 99–108. [Google Scholar] [CrossRef] [PubMed]
- van der Kooij, H.; Jacobs, R.; Koopman, B.; van der Helm, F. An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biol. Cybern. 2001, 84, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Mahboobin, A.; Loughlin, P.J.; Redfern, M.S.; Sparto, P.J. Sensory re-weighting in human postural control during moving-scene perturbations. Exp. Brain Res. 2005, 167, 260–267. [Google Scholar] [CrossRef]
- Weech, S.; Calderon, C.M.; Barnett-Cowan, M. Sensory down-weighting in visual-postural coupling is linked with lower cybersickness. Front. Virtual Real. 2020, 1, 10. [Google Scholar] [CrossRef]
- Turner, M.; Griffin, M.J. Motion sickness in public road transport: The effect of driver, route and vehicle. Ergonomics 1999, 42, 1646–1664. [Google Scholar] [CrossRef]
- Bos, J.E.; MacKinnon, S.N.; Patterson, A. Motion sickness symptoms in a ship motion simulator: Effects of inside, outside, and no view. Aviat. Space Environ. Med. 2005, 76, 1111–1118. [Google Scholar]
- Barbour, A.J.; Parker, R.L. Psd: Adaptive, sine multitaper power spectral density estimation for R. Comput. Geosci. 2014, 63, 18. [Google Scholar] [CrossRef]
- Fitzpatrick, R.C.; Gorman, R.B.; Burke, D.; Gandevia, S.C. Postural proprioceptive reflexes in standing human subjects: Bandwidth of response and transmission characteristics. J. Physiol. 1992, 458, 69–83. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Fan, Y. Sample Quantiles in Statistical Packages. Am. Stat. 1996, 50, 361. [Google Scholar] [CrossRef]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [CrossRef]
- Kitazaki, M.; Kimura, T. Effects of long-term adaptation to sway-yoked visual motion and galvanic vestibular stimulation on visual and vestibular control of posture. Presence 2010, 19, 544–556. [Google Scholar] [CrossRef]
- Riccio, G.E.; Stoffregen, T.A. An ecological theory of Motion Sickness and postural instability. Ecol. Psychol. 1991, 3, 195–240. [Google Scholar] [CrossRef]
- Oman, C.M. A Heuristic Mathematical Model for the Dynamics of Sensory Conflict and Motion Sickness Hearing in Classical Musicians. Acta Oto-Laryngol. 1982, 94, 4–44. [Google Scholar] [CrossRef]
- Reason, J.T. Motion sickness adaptation: A neural mismatch model. J. R. Soc. Med. 1978, 71, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Reason, J.T.; Brand, J.J. Motion Sickness; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1975. [Google Scholar]
- Owen, N.; Leadbetter, A.G.; Yardley, L. Relationship between postural control and motion sickness in healthy subjects. Brain Res. Bull. 1998, 47, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Golding, J.F. Predicting individual differences in motion sickness susceptibility by questionnaire. Pers. Indiv Differ. 2006, 41, 237–248. [Google Scholar] [CrossRef]
- Park, A.H.; Hu, S. Gender differences in motion sickness history and susceptibility to optokinetic rotation-induced motion sickness. Aviat. Space Environ. Med. 1999, 70, 1077–1080. [Google Scholar]
- Kennedy, R.S.; Lanham, D.S.; Massey, C.J.; Drexler, J.M.; Lilienthal, M.G. Gender differences in simulator sickness incidence: Implications for military virtual reality systems. Safe 1995, 25, 69–76. [Google Scholar]
- Lawther, A.; Griffin, M.J. A survey of the occurrence of motion sickness amongst passengers at sea. Aviat. Space Environ. Med. 1998, 59, 399–406. [Google Scholar]
- Koslucher, F.C.; Haaland, E.; Malsch, A.; Webeler, J.; Stoffregen, T.A. Sex differences in the incidence of motion sickness induced by linear visual oscillation. Aviat. Med. Hum. Perf. 2015, 86, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Matchock, R.L.; Levine, M.E.; Gianaros, P.J.; Stern, R.M. Susceptibility to nausea and motion sickness as a function of the menstrual cycle. Womens Health Issues 2008, 18, 328–335. [Google Scholar] [CrossRef]
- Era, P.; Sainio, P.; Koskinen, S.; Haavisto, P.; Vaara, M.; Aromaa, A. Postural balance in a random sample of 7979 subjects aged 30 years and over. Gerontology 2006, 52, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Chiari, L.; Rocchi, L.; Cappello, A. Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. 2002, 17, 666–677. [Google Scholar] [CrossRef]
- Kim, J.W.; Eom, G.M.; Kim, C.S.; Kim, D.H.; Lee, J.H.; Park, B.K.; Hong, J. Sex differences in the postural sway characteristics of young and elderly subjects during quiet natural standing. Geriat. Geront. Int. 2010, 10, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E.V.; Rose, J.; Rohlfing, T.; Pfefferbaum, A. Postural sway reduction in aging men and women: Relation to brain structure, cognitive status, and stabilizing factors. Neurobiol. Aging 2009, 30, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Koslucher, F.; Haaland, E.; Stoffregen, T.A. Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness. Exp. Brain Res. 2016, 234, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Catanzariti, J.F.; Guyot, M.A.; Massot, C.; Khenioui, H.; Agnani, O.; Donzé, C. Evaluation of motion sickness susceptibility by motion sickness susceptibility questionnaire in adolescents with idiopathic scoliosis: A case-control study. Eur. Spine J. 2016, 25, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Mittelstaedt, J.M. Individual predictors of the susceptibility for motion-related sickness: A systematic review. J. Vest. Res. 2020, 30, 165–193. [Google Scholar] [CrossRef] [PubMed]
- Graybiel, A. Susceptibility to acute motion sickness in blind persons. Aerosp. Med. 1970, 41, 650–653. [Google Scholar]
- Mayo, A.M.; Wade, M.G.; Stoffregen, T.A. Postural effects of the horizon on land and at sea. Psychol. Sci. 2011, 22, 118–124. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dida, M.; Guerraz, M.; Barraud, P.-A.; Cian, C. Relationship between Car-Sickness Susceptibility and Postural Activity: Could the Re-Weighting Strategy between Signals from Different Body Sensors Be an Underlying Factor? Sensors 2024, 24, 1046. https://doi.org/10.3390/s24041046
Dida M, Guerraz M, Barraud P-A, Cian C. Relationship between Car-Sickness Susceptibility and Postural Activity: Could the Re-Weighting Strategy between Signals from Different Body Sensors Be an Underlying Factor? Sensors. 2024; 24(4):1046. https://doi.org/10.3390/s24041046
Chicago/Turabian StyleDida, Merrick, Michel Guerraz, Pierre-Alain Barraud, and Corinne Cian. 2024. "Relationship between Car-Sickness Susceptibility and Postural Activity: Could the Re-Weighting Strategy between Signals from Different Body Sensors Be an Underlying Factor?" Sensors 24, no. 4: 1046. https://doi.org/10.3390/s24041046
APA StyleDida, M., Guerraz, M., Barraud, P.-A., & Cian, C. (2024). Relationship between Car-Sickness Susceptibility and Postural Activity: Could the Re-Weighting Strategy between Signals from Different Body Sensors Be an Underlying Factor? Sensors, 24(4), 1046. https://doi.org/10.3390/s24041046