Multiphysics Modeling of Electrochemical Impedance Spectroscopy Responses of SAM-Modified Screen-Printed Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodes under Evaluation and Measurements Set-Up
2.2. Multiphysics 3D Model
3. Results and Discussion
3.1. Bare SPEs Model Calibration
3.2. SAM-Modified SPEs Model Calibration
3.3. Assessment of Simulated Surface Coverage and Variation of Charge Transfer Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef]
- Kerman, K.; Kobayashi, M.; Tamiya, E. Recent Trends in Electrochemical DNA Biosensor Technology. Meas. Sci. Technol. 2004, 15, R1–R11. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A High-Performance Electrochemical Aptasensor Based on Graphene-Decorated Rhodium Nanoparticles to Detect HER2-ECD Oncomarker in Liquid Biopsy. Sci. Rep. 2022, 12, 3299. [Google Scholar] [CrossRef]
- Alexandre, D.L.; Melo, A.M.A.; Furtado, R.F.; Borges, M.F.; Figueiredo, E.A.T.; Biswas, A.; Cheng, H.N.; Alves, C.R. A Rapid and Specific Biosensor for Salmonella Typhimurium Detection in Milk. Food Bioprocess Technol. 2018, 11, 748–756. [Google Scholar] [CrossRef]
- Rosati, G.; Ravarotto, M.; Scaramuzza, M.; De Toni, A.; Paccagnella, A. Silver Nanoparticles Inkjet-Printed Flexible Biosensor for Rapid Label-Free Antibiotic Detection in Milk. Sens. Actuators B Chem. 2019, 280, 280–289. [Google Scholar] [CrossRef]
- Bonaldo, S.; Franchin, L.; Pasqualotto, E.; Cretaio, E.; Losasso, C.; Peruzzo, A.; Paccagnella, A. Influence of BSA Protein on Electrochemical Response of Genosensors. IEEE Sens. J. 2023, 23, 1786–1794. [Google Scholar] [CrossRef]
- Bonaldo, S.; Franchin, L.; Cretaio, E.; Pasqualotto, E.; Scaramuzza, M.; Paccagnella, A. Electrochemical Biosensor for the Monitoring of Phages of Lactococcus lactis in Milk-Based Samples. IEEE Sens. J. 2024, 24, 78–85. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Guo, J. Functionalized Carbon-Based Electrochemical Sensors for Food and Alcoholic Beverage Safety. Appl. Sci. 2022, 12, 9082. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Askari, E.; Haghiralsadat, F.; Tofighi, D. A Highly Sensitive Nanobiosensor Based on Aptamer-Conjugated Graphene-Decorated Rhodium Nanoparticles for Detection of HER2-Positive Circulating Tumor Cells. Nanotechnol. Rev. 2022, 11, 793–810. [Google Scholar] [CrossRef]
- Hasan, M.R.; Ahommed, M.S.; Daizy, M.; Bacchu, M.S.; Ali, M.R.; Al-Mamun, M.R.; Saad Aly, M.A.; Khan, M.Z.H.; Hossain, S.I. Recent Development in Electrochemical Biosensors for Cancer Biomarkers Detection. Biosens. Bioelectron. X 2021, 8, 100075. [Google Scholar] [CrossRef]
- Parnianchi, F.; Kashanian, S.; Nazari, M.; Peacock, M.; Omidfar, K.; Varmira, K. Ultrasensitive Electrochemical Sensor Based on Molecular Imprinted Polymer and Ferromagnetic Nanocomposite for Bilirubin Analysis in the Saliva and Serum of Newborns. Microchem. J. 2022, 179, 107474. [Google Scholar] [CrossRef]
- Rosati, G.; Urban, M.; Zhao, L.; Yang, Q.; de Carvalho Castro e Silva, C.; Bonaldo, S.; Parolo, C.; Nguyen, E.P.; Ortega, G.; Fornasiero, P.; et al. A Plug, Print & Play Inkjet Printing and Impedance-Based Biosensing Technology Operating through a Smartphone for Clinical Diagnostics. Biosens. Bioelectron. 2022, 196, 113737. [Google Scholar] [CrossRef]
- Ben Hassine, A.; Raouafi, N.; Moreira, F.T.C. Novel Biomimetic Prussian Blue Nanocubes-Based Biosensor for Tau-441 Protein Detection. J. Pharm. Biomed. Anal. 2023, 226, 115251. [Google Scholar] [CrossRef] [PubMed]
- Erçarıkcı, E.; Dağcı Kıranşan, K.; Topçu, E. A Flexible Graphene Paper Electrochemical Sensor with Electrodeposited Ag and Ni Nanoparticles for H2O2 Detection. IEEE Sens. J. 2023, 23, 7087–7094. [Google Scholar] [CrossRef]
- Dickinson, E.J.F.; Ekström, H.; Fontes, E. COMSOL Multiphysics®: Finite Element Software for Electrochemical Analysis. A Mini-Review. Electrochem. Commun. 2014, 40, 71–74. [Google Scholar] [CrossRef]
- Zainuddin, A.A.; Nordin, A.N.; Rahim, R.A.; Mak, W.C. Modeling of a Novel Biosensor with Integrated Mass and Electrochemical Sensing Capabilities. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016; pp. 420–425. [Google Scholar]
- Farhana Roslan, N.A.; Rahim, R.A.; Md Ralib, A.A.; Za’bah, N.F.; Nordin, A.N.; Riza Bashri, M.S.; Suhaimi, M.I.; Samsudin, Z.; Ming, L.L.; Sugandi, G. Simulation of Geometrical Parameters of Screen Printed Electrode (SPE) for Electrochemical-Based Sensor. In Proceedings of the 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Kuala Lumpur, Malaysia, 2–4 August 2021; pp. 137–140. [Google Scholar]
- Abdallah, M. Design, Simulation, and Development of a BioSensor for Viruses Detection Using FPGA. IEEE J. Transl. Eng. Health Med. 2021, 9, 1–6. [Google Scholar] [CrossRef]
- Bharathi, S.J.; Thilagar, S.H.; Jayasurya, V. Design and Modeling of Electrochemical Sensor for Determining ION Concentration. In Proceedings of the 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Chennai, India, 4–6 July 2019; pp. 1–5. [Google Scholar]
- Kaffash, A.; Rostami, K.; Zare, H.R. Modeling of an Electrochemical Nanobiosensor in COMSOL Multiphysics to Determine Phenol in the Presence of Horseradish Peroxidase Enzyme. Enzyme Microb. Technol. 2019, 121, 23–28. [Google Scholar] [CrossRef]
- Grossi, M.; Riccò, B. Electrical Impedance Spectroscopy (EIS) for Biological Analysis and Food Characterization: A Review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef]
- Lisdat, F.; Schäfer, D. The Use of Electrochemical Impedance Spectroscopy for Biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef]
- COMSOL Multiphysics® Software—Understand, Predict, and Optimize. Available online: https://www.comsol.com/comsol-multiphysics (accessed on 10 December 2023).
- Bonaldo, S.; Franchin, L.; Rosati, G.; Tonello, S.; Merkoçi, A.; Paccagnella, A. Multiphysics Simulations of Screen-Printed Electrodes for Electrochemical Biosensing. In Proceedings of the 2023 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Brescia, Italy, 6 June 2023; pp. 320–325. [Google Scholar]
- Chang, B.-Y. Conversion of a Constant Phase Element to an Equivalent Capacitor. J. Electrochem. Sci. Technol. 2020, 11, 318–321. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansfeld, F. Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Swamy, T.; Chiang, Y.-M. Electrochemical Charge Transfer Reaction Kinetics at the Silicon-Liquid Electrolyte Interface. J. Electrochem. Soc. 2015, 162, A7129–A7134. [Google Scholar] [CrossRef]
- Krishnaveni, P.; Ganesh, V. Electron Transfer Studies of a Conventional Redox Probe in Human Sweat and Saliva Bio-Mimicking Conditions. Sci. Rep. 2021, 11, 7663. [Google Scholar] [CrossRef] [PubMed]
- Konopka, S.J.; McDuffie, B. Diffusion Coefficients of Ferri- and Ferrocyanide Ions in Aqueous Media, Using Twin-Electrode Thin-Layer Electrochemistry. Anal. Chem. 1970, 42, 1741–1746. [Google Scholar] [CrossRef]
- Saraç, H.; Patrick, M.A.; Wragg, A.A. Physical Properties of the Ternary Electrolyte Potassium Ferri-Ferrocyanide in Aqueous Sodium Hydroxide Solution in the Range 10–90 °C. J. Appl. Electrochem. 1993, 23, 51–55. [Google Scholar] [CrossRef]
- Caglayan, M.O. Plasmon Resonance-Enhanced Internal Reflection Ellipsometry for the Trace Detection of Mercuric Ion. Int. J. Environ. Sci. Technol. 2018, 15, 909–914. [Google Scholar] [CrossRef]
- Aizawa, H.; Gokita, Y.; Park, J.-W.; Yoshimi, Y.; Kurosawa, S. Antibody Immobilization on Functional Monolayers Using a Quartz Crystal Microbalance. IEEE Sens. J. 2006, 6, 1052–1056. [Google Scholar] [CrossRef]
- Eckermann, A.L.; Feld, D.J.; Shaw, J.A.; Meade, T.J. Electrochemistry of Redox-Active Self-Assembled Monolayers. Coord. Chem. Rev. 2010, 254, 1769–1802. [Google Scholar] [CrossRef]
- Liu, B.; Bard, A.J.; Li, C.-Z.; Kraatz, H.-B. Scanning Electrochemical Microscopy. 51. Studies of Self-Assembled Monolayers of DNA in the Absence and Presence of Metal Ions. J. Phys. Chem. B 2005, 109, 5193–5198. [Google Scholar] [CrossRef]
- Sánchez-Pomales, G.; Santiago-Rodríguez, L.; Rivera-Vélez, N.E.; Cabrera, C.R. Control of DNA Self-Assembled Monolayers Surface Coverage by Electrochemical Desorption. J. Electroanal. Chem. 2007, 611, 80–86. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
E0 | 132 [mV] |
Cdl | 0.1 [F/m2] |
j0 | 2.5 [A/m2] |
DR = DO | 7 × 10−6 [cm2/s] |
αa | 0.5 |
αc | 0.5 |
Parameter | Value |
---|---|
E0 | 110 [mV] |
Cdl | 0.1 [F/m2] |
j0 | 0.55 [A/m2] |
Dred = Do | 7.1 × 10−6 [cm/s] |
αa | 0.6 |
αc | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchin, L.; Bonaldo, S. Multiphysics Modeling of Electrochemical Impedance Spectroscopy Responses of SAM-Modified Screen-Printed Electrodes. Sensors 2024, 24, 858. https://doi.org/10.3390/s24030858
Franchin L, Bonaldo S. Multiphysics Modeling of Electrochemical Impedance Spectroscopy Responses of SAM-Modified Screen-Printed Electrodes. Sensors. 2024; 24(3):858. https://doi.org/10.3390/s24030858
Chicago/Turabian StyleFranchin, Lara, and Stefano Bonaldo. 2024. "Multiphysics Modeling of Electrochemical Impedance Spectroscopy Responses of SAM-Modified Screen-Printed Electrodes" Sensors 24, no. 3: 858. https://doi.org/10.3390/s24030858
APA StyleFranchin, L., & Bonaldo, S. (2024). Multiphysics Modeling of Electrochemical Impedance Spectroscopy Responses of SAM-Modified Screen-Printed Electrodes. Sensors, 24(3), 858. https://doi.org/10.3390/s24030858