Probabilistic Attention Map: A Probabilistic Attention Mechanism for Convolutional Neural Networks
Abstract
:1. Introduction
- Instead of relying on heuristic methods, the proposed approach estimates the probabilistic distribution of activation maps within the CNN and constructs an attention map based on the correlation between attention weights and the estimated probability density function values. The experimental results verify that the proposed Laplace distribution can fit the activation map distribution more accurately than other distributions.
- The proposed probabilistic attention map, informed by the distribution of activations, is incorporated as a plug-and-play module into existing CNN architectures to improve their performance in image classification tasks. The experimental results demonstrate that the proposed method boosts image classification accuracy.
2. Related Works
2.1. Conventional Attention Mechanisms
2.2. Contributions of Proposed Approach
- Firstly, the proposed method constructs an attention map by estimating the probabilistic distribution of activation maps and correlating these with attention weights, providing a statistically grounded alternative to heuristic approaches. To be more specific, a Laplace distribution is used in this paper. This is very different from a Gaussian process [26], a Gaussian distribution [28], and an energy function [27]. An experiment was conducted by using the CIFAR-10 and CIFAR-100 datasets to justify the choice of the Laplace distribution by using five goodness-of-fit measures, as shown in Section 3.2.
3. Proposed Approach
3.1. Motivation
3.2. Probabilistic Distribution of Activations
- Deviation of Gain (DG): It assesses the difference between the cumulative distribution functions (CDFs) of the observed data and the fitted distribution. It measures how the predicted distribution deviates from the observed distribution in terms of the gain as
- Kling–Gupta Efficiency (KGE): It combines three components, correlation, bias, and variability, to provide a balanced evaluation of model performance as
- Mean Absolute Error (MAE): It measures the average magnitude of errors between observed values and predicted values as
- Modified Nash–Sutcliffe Efficiency (MNSE): It adjusts the traditional Nash–Sutcliffe Efficiency to account for bias and other systematic errors. It assesses the predictive accuracy relative to the variability of the observed data as
- Ratio of standard deviations (RSD): It compares the spread of the predicted values to the observed values as
3.3. Proposed Probabilistic Attention Function
3.4. Integration Strategy
3.5. Summary of Proposed Approach
4. Experimental Results
4.1. Experimental Setup
4.2. Baseline Models
4.3. Performance Metrics
4.4. Implementation Details
4.5. Performance Comparison
4.6. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torralba, A.; Isola, P.; Freeman, W.T. Foundations of Computer Vision; MIT Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Lim, Y.G.; Wu, J.; Goh, Y.M.; Tian, J.; Gan, V. Automated classification of “cluttered” construction housekeeping images through supervised and self-supervised feature representation learning. Autom. Constr. 2023, 156, 105095. [Google Scholar] [CrossRef]
- Haouassi, S.; Wu, D. An Efficient Attentional Image Dehazing Deep Network Using Two Color Space. Sensors 2024, 24, 687. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Bose, P.; Rana, P.; Ghosh, P. Attention-Based Multimodal Deep Learning on Vision-Language Data: Models, Datasets, Tasks, Evaluation Metrics and Applications. IEEE Access 2023, 11, 80624–80646. [Google Scholar] [CrossRef]
- Kotseruba, I.; Tsotsos, J.K. Attention for Vision-Based Assistive and Automated Driving: A Review of Algorithms and Datasets. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19907–19928. [Google Scholar] [CrossRef]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Hassanin, M.; Anwar, S.; Radwan, I.; Khan, F.S.; Mian, A. Visual attention methods in deep learning: An in-depth survey. Inf. Fusion 2024, 108, 102417. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, Z.; Tian, J.; Ma, L. Focal DETR: Target-Aware Token Design for Transformer-Based Object Detection. Sensors 2022, 22, 8686. [Google Scholar] [CrossRef] [PubMed]
- Lai, B.; Zhang, Z.; Tian, J.; Ma, L. Dual attention-guided state controller mechanism for Text-to-Image generation. In Proceedings of the IEEE Region 10 Conference, Hong Kong, China, 1–4 November 2022; pp. 1–6. [Google Scholar]
- Lai, B.; Ma, L.; Tian, J. Gated cross word-visual attention-driven generative adversarial networks for text-to-image synthesis. In Proceedings of the 16th Asian Conference on Computer Vision, Macao, China, 4–8 December 2022; pp. 2028–2040. [Google Scholar]
- Xie, T.; Tian, J.; Ma, L. A vision-based hand hygiene monitoring approach using self-attention convolutional neural network. Biomed. Signal Process. Control 2022, 76, 103651. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Lee, H.; Kim, H.E.; Nam, H. SRM: A Style-Based Recalibration Module for Convolutional Neural Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1854–1862. [Google Scholar]
- Yang, Z.; Zhu, L.; Wu, Y.; Yang, Y. Gated Channel Transformation for Visual Recognition. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11791–11800. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Zhang, H.; Zu, K.; Lu, J.; Zou, Y.; Meng, D. EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network. In Proceedings of the Asian Conference on Computer Vision, Macao, China, 4–8 December 2023; pp. 541–557. [Google Scholar]
- Mou, C.; Zhang, J.; Fan, X.; Liu, H.; Wang, R. COLA-Net: Collaborative Attention Network for Image Restoration. IEEE Trans. Multimed. 2022, 24, 1366–1377. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Global Context Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 6881–6895. [Google Scholar] [CrossRef] [PubMed]
- Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial transformer networks. In Proceedings of the Proceedings Information Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2017–2025. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Vedaldi, A. Gather-excite: Exploiting feature context in convolutional neural networks. In Proceedings of the Proceedings Information Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 9423–9433. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3141–3149. [Google Scholar]
- Zhao, H.; Kong, X.; He, J.; Qiao, Y.; Dong, C. Efficient Image Super-Resolution Using Pixel Attention. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 56–72. [Google Scholar]
- Hao, Y.; Wang, S.; Cao, P.; Gao, X.; Xu, T.; Wu, J.; He, X. Attention in Attention: Modeling Context Correlation for Efficient Video Classification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7120–7132. [Google Scholar] [CrossRef]
- Xie, J.; Ma, Z.; Chang, D.; Zhang, G.; Guo, J. GPCA: A Probabilistic Framework for Gaussian Process Embedded Channel Attention. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 8230–8248. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Xie, J.; Zhang, J. Less Is More Important: An Attention Module Guided by Probability Density Function for Convolutional Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Montréal, QC, Canada, 8–10 August 2023; Volume 37, pp. 2947–2955. [Google Scholar]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liang, S.; Liang, M. A generic shared attention mechanism for various backbone neural networks. Neurocomputing 2025, 611, 128697. [Google Scholar] [CrossRef]
- Ioannides, G.; Chadha, A.; Elkins, A. Density Adaptive Attention is All You Need: Robust Parameter-Efficient Fine-Tuning Across Multiple Modalities. arXiv 2024, arXiv:2401.11143. [Google Scholar]
- Li, J.; Li, Z.; Wen, Y. EAN: An Efficient Attention Module Guided by Normalization for Deep Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; pp. 3100–3108. [Google Scholar]
- Houska, T.; Kraft, P.; Chamorro-Chavez, A.; Breuer, L. SPOTting Model Parameters Using a Ready-Made Python Package. PLoS ONE 2015, 10, e0145180. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 20 December 2024).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
Method | Year | Attention Design | Is It a Probabilistic Method? |
---|---|---|---|
[13] | 2018 | Channel | - |
[14] | 2019 | Channel | - |
[15] | 2020 | Channel | - |
[16] | 2020 | Channel | - |
[17] | 2023 | Channel | - |
[18] | 2022 | Non-local | - |
[19] | 2023 | Self | - |
[20] | 2015 | Spatial | - |
[21] | 2018 | Spatial | - |
[22] | 2018 | Spatial and channel | - |
[23] | 2019 | Spatial and channel | - |
[24] | 2020 | Spatial and channel | - |
[25] | 2022 | Spatial and channel | - |
[26] | 2022 | Channel | √ |
[27] | 2021 | Spatial | √ |
[28] | 2023 | Spatial | √ |
Proposed approach | - | Spatial | √ |
Indication of | CIFAR-10 Dataset | CIFAR-100 Dataset | |||
---|---|---|---|---|---|
Measure | Better Performance | Gaussian [28] | Laplace | Gaussian [28] | Laplace |
DG | A smaller value | −0.912 | −0.920 | −0.912 | −0.919 |
KGE | A value closer to 1 | −0.025 | −0.017 | −0.026 | −0.017 |
MAE | A smaller value | 0.079 | 0.077 | 0.079 | 0.077 |
MNSE | A value closer to 1 | −0.591 | −0.551 | −0.591 | −0.550 |
RSD | A value closer to 1 | 0.951 | 0.955 | 0.951 | 0.955 |
Attention | ResNet-20 | ||||
Module | Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 |
Baseline | 91.19 ± 0.18 | 99.71 ± 0.03 | 91.17 ± 0.22 | 91.18 ± 0.22 | 91.17 ± 0.22 |
+ [13] | 91.60 ± 0.10 | 99.74 ± 0.04 | 91.59 ± 0.14 | 91.60 ± 0.14 | 91.59 ± 0.14 |
+ [22] | 91.55 ± 0.16 | 99.74 ± 0.03 | 91.51 ± 0.19 | 91.50 ± 0.18 | 91.50 ± 0.18 |
+ [27] | 91.52 ± 0.13 | 99.70 ± 0.03 | 91.51 ± 0.13 | 91.52 ± 0.13 | 91.50 ± 0.13 |
+ [28] | 91.38 ± 0.16 | 99.73 ± 0.04 | 91.28 ± 0.25 | 91.30 ± 0.25 | 91.28 ± 0.25 |
+ Proposed | 91.62 ± 0.16 | 99.71 ± 0.04 | 91.46 ± 0.15 | 91.48 ± 0.15 | 91.46 ± 0.15 |
ResNet-56 | |||||
Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 | |
Baseline | 92.64 ± 0.30 | 99.75 ± 0.03 | 92.63 ± 0.35 | 92.63 ± 0.35 | 92.62 ± 0.35 |
+ [13] | 93.18 ± 0.14 | 99.75 ± 0.04 | 93.12 ± 0.21 | 93.13 ± 0.22 | 93.12 ± 0.22 |
+ [22] | 93.03 ± 0.14 | 99.77 ± 0.05 | 93.00 ± 0.19 | 93.01 ± 0.18 | 93.00 ± 0.18 |
+ [27] | 92.89 ± 0.17 | 99.74 ± 0.02 | 92.85 ± 0.22 | 92.86 ± 0.21 | 92.85 ± 0.21 |
+ [28] | 93.00 ± 0.12 | 99.73 ± 0.04 | 92.96 ± 0.14 | 92.97 ± 0.13 | 92.96 ± 0.13 |
+ Proposed | 92.85 ± 0.10 | 99.75 ± 0.05 | 92.85 ± 0.06 | 92.87 ± 0.07 | 92.86 ± 0.06 |
ResNet-110 | |||||
Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 | |
Baseline | 93.13 ± 0.15 | 99.75 ± 0.03 | 93.04 ± 0.23 | 93.05 ± 0.24 | 93.04 ± 0.24 |
+ [13] | 93.54 ± 0.20 | 99.78 ± 0.03 | 93.46 ± 0.21 | 93.46 ± 0.21 | 93.45 ± 0.21 |
+ [22] | 93.41 ± 0.18 | 99.79 ± 0.04 | 93.32 ± 0.24 | 93.33 ± 0.23 | 93.31 ± 0.23 |
+ [27] | 93.33 ± 0.20 | 99.78 ± 0.03 | 93.36 ± 0.22 | 93.37 ± 0.21 | 93.36 ± 0.22 |
+ [28] | 93.45 ± 0.12 | 99.75 ± 0.04 | 93.39 ± 0.28 | 93.40 ± 0.28 | 93.39 ± 0.29 |
+ Proposed | 93.39 ± 0.13 | 99.77 ± 0.03 | 93.34 ± 0.09 | 93.34 ± 0.08 | 93.33 ± 0.08 |
MobileNetV2 | |||||
Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 | |
Baseline | 93.82 ± 0.13 | 99.82 ± 0.03 | 93.71 ± 0.14 | 93.71 ± 0.13 | 93.70 ± 0.13 |
+ [13] | 93.56 ± 0.19 | 99.79 ± 0.03 | 93.60 ± 0.24 | 93.58 ± 0.24 | 93.56 ± 0.24 |
+ [22] | 93.42 ± 0.16 | 99.77 ± 0.03 | 93.35 ± 0.19 | 93.36 ± 0.18 | 93.35 ± 0.19 |
+ [27] | 93.80 ± 0.11 | 99.75 ± 0.04 | 93.71 ± 0.13 | 93.71 ± 0.12 | 93.70 ± 0.12 |
+ [28] | 93.61 ± 0.19 | 99.79 ± 0.04 | 93.61 ± 0.19 | 93.60 ± 0.20 | 93.60 ± 0.19 |
+ Proposed | 93.71 ± 0.16 | 99.80 ± 0.04 | 93.71 ± 0.18 | 93.72 ± 0.18 | 93.71 ± 0.18 |
Attention | ResNet-20 | ||||
Module | Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 |
Baseline | 66.07 ± 0.41 | 89.84 ± 0.23 | 66.84 ± 0.34 | 66.47 ± 0.29 | 66.50 ± 0.30 |
+ [13] | 67.04 ± 0.10 | 90.16 ± 0.22 | 67.50 ± 0.34 | 67.13 ± 0.22 | 67.13 ± 0.22 |
+ [22] | 66.79 ± 0.25 | 90.31 ± 0.17 | 67.45 ± 0.40 | 66.97 ± 0.15 | 66.98 ± 0.24 |
+ [27] | 66.83 ± 0.44 | 90.00 ± 0.28 | 67.48 ± 0.37 | 66.98 ± 0.35 | 67.03 ± 0.36 |
+ [28] | 66.29 ± 0.12 | 89.75 ± 0.13 | 66.95 ± 0.48 | 66.45 ± 0.32 | 66.49 ± 0.38 |
+ Proposed | 66.86 ± 0.12 | 90.22 ± 0.19 | 67.35 ± 0.21 | 66.94 ± 0.20 | 66.97 ± 0.21 |
ResNet-56 | |||||
Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 | |
Baseline | 69.41 ± 0.54 | 90.66 ± 0.13 | 69.95 ± 0.65 | 69.56 ± 0.65 | 69.59 ± 0.65 |
+ [13] | 70.32 ± 0.35 | 91.35 ± 0.11 | 70.98 ± 0.32 | 70.59 ± 0.25 | 70.63 ± 0.26 |
+ [22] | 70.20 ± 0.26 | 91.15 ± 0.15 | 70.64 ± 0.51 | 70.23 ± 0.46 | 70.26 ± 0.45 |
+ [27] | 69.62 ± 0.47 | 90.84 ± 0.25 | 70.37 ± 0.78 | 69.87 ± 0.75 | 69.95 ± 0.76 |
+ [28] | 69.67 ± 0.20 | 91.09 ± 0.32 | 70.24 ± 0.28 | 69.88 ± 0.36 | 69.91 ± 0.33 |
+ Proposed | 69.70 ± 0.28 | 91.05 ± 0.16 | 70.55 ± 0.30 | 70.11 ± 0.30 | 70.16 ± 0.26 |
ResNet-110 | |||||
Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 | |
Baseline | 71.29 ± 0.46 | 91.42 ± 0.16 | 71.54 ± 0.51 | 71.31 ± 0.53 | 71.29 ± 0.54 |
+ [13] | 72.11 ± 0.09 | 91.77 ± 0.21 | 72.39 ± 0.21 | 72.08 ± 0.22 | 72.07 ± 0.19 |
+ [22] | 71.80 ± 0.17 | 91.76 ± 0.23 | 72.01 ± 0.25 | 71.72 ± 0.21 | 71.72 ± 0.23 |
+ [27] | 71.49 ± 0.39 | 91.56 ± 0.15 | 71.87 ± 0.31 | 71.56 ± 0.24 | 71.56 ± 0.26 |
+ [28] | 71.26 ± 0.16 | 91.73 ± 0.17 | 71.58 ± 0.27 | 71.26 ± 0.26 | 71.28 ± 0.26 |
+ Proposed | 71.62 ± 0.34 | 91.65 ± 0.12 | 71.98 ± 0.49 | 71.67 ± 0.43 | 71.68 ± 0.44 |
MobileNetV2 | |||||
Top-1 Acc. | Top-5 Acc. | Prec.@Top-1 | Rec.@Top-1 | F1@Top-1 | |
Baseline | 73.97 ± 0.31 | 92.97 ± 0.14 | 74.15 ± 0.34 | 73.97 ± 0.35 | 73.93 ± 0.34 |
+ [13] | 73.78 ± 0.14 | 92.78 ± 0.11 | 73.85 ± 0.27 | 73.80 ± 0.24 | 73.71 ± 0.26 |
+ [22] | 73.09 ± 0.19 | 92.33 ± 0.17 | 73.15 ± 0.31 | 73.09 ± 0.29 | 72.99 ± 0.30 |
+ [27] | 74.21 ± 0.25 | 93.23 ± 0.05 | 74.44 ± 0.43 | 74.19 ± 0.41 | 74.19 ± 0.42 |
+ [28] | 74.26 ± 0.29 | 93.05 ± 0.20 | 74.46 ± 0.33 | 74.23 ± 0.39 | 74.22 ± 0.37 |
+ Proposed | 74.42 ± 0.16 | 93.24 ± 0.14 | 74.65 ± 0.29 | 74.43 ± 0.29 | 74.41 ± 0.30 |
Module | FLOPs | # Parameters | FLOPs | # Parameters |
---|---|---|---|---|
CIFAR-10 image dataset | ||||
ResNet-20 | ResNet-56 | |||
Baseline | 41.31 M | 0.270 M | 127.62 M | 0.853 M |
+ [13] | 41.49 M | 0.271 M | 128.15 M | 0.859 M |
+ [22] | 41.89 M | 0.272 M | 129.36 M | 0.863 M |
+ [27] | 41.31 M | 0.270 M | 127.62 M | 0.853 M |
+ [28] | 41.31 M | 0.271 M | 127.62 M | 0.856 M |
+ Proposed | 41.31 M | 0.271 M | 127.62 M | 0.856 M |
ResNet-110 | MobileNetV2 | |||
Baseline | 257.09 M | 1.728 M | 92.78 M | 2.237 M |
+ [13] | 258.13 M | 1.740 M | 93.08 M | 2.265 M |
+ [22] | 260.57 M | 1.748 M | 93.55 M | 2.268 M |
+ [27] | 257.09 M | 1.728 M | 92.78 M | 2.237 M |
+ [28] | 257.09 M | 1.734 M | 92.78 M | 2.258 M |
+ Proposed | 257.09 M | 1.734 M | 92.78 M | 2.258 M |
CIFAR-100 image dataset | ||||
ResNet-20 | ResNet-56 | |||
Baseline | 41.32 M | 0.276 M | 127.63 M | 0.859 M |
+ [13] | 41.49 M | 0.277 M | 128.15 M | 0.865 M |
+ [22] | 41.90 M | 0.278 M | 129.37 M | 0.869 M |
+ [27] | 41.32 M | 0.276 M | 127.63 M | 0.859 M |
+ [28] | 41.32 M | 0.277 M | 127.63 M | 0.862 M |
+ Proposed | 41.32 M | 0.277 M | 127.63 M | 0.862 M |
ResNet-110 | MobileNetV2 | |||
Baseline | 257.10 M | 1.734 M | 92.89 M | 2.352 M |
+ [13] | 258.14 M | 1.746 M | 93.20 M | 2.380 M |
+ [22] | 260.58 M | 1.753 M | 93.67 M | 2.384 M |
+ [27] | 257.10 M | 1.734 M | 92.89 M | 2.352 M |
+ [28] | 257.10 M | 1.740 M | 92.89 M | 2.373 M |
+ Proposed | 257.10 M | 1.740 M | 92.89 M | 2.373 M |
CIFAR-10 | CIFAR-100 | |||
---|---|---|---|---|
- | - | - | 92.18 ± 0.22 | 68.21 ± 0.12 |
√ | - | - | 92.29 ± 0.11 | 68.46 ± 0.11 |
- | √ | - | 92.02 ± 0.10 | 67.98 ± 0.29 |
- | - | √ | 92.23 ± 0.06 | 68.32 ± 0.26 |
√ | √ | - | 92.07 ± 0.14 | 68.17 ± 0.37 |
√ | - | √ | 92.26 ± 0.23 | 68.37 ± 0.44 |
- | √ | √ | 92.25 ± 0.14 | 68.34 ± 0.17 |
√ | √ | √ | 92.22 ± 0.26 | 68.25 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Tian, J. Probabilistic Attention Map: A Probabilistic Attention Mechanism for Convolutional Neural Networks. Sensors 2024, 24, 8187. https://doi.org/10.3390/s24248187
Liu Y, Tian J. Probabilistic Attention Map: A Probabilistic Attention Mechanism for Convolutional Neural Networks. Sensors. 2024; 24(24):8187. https://doi.org/10.3390/s24248187
Chicago/Turabian StyleLiu, Yifeng, and Jing Tian. 2024. "Probabilistic Attention Map: A Probabilistic Attention Mechanism for Convolutional Neural Networks" Sensors 24, no. 24: 8187. https://doi.org/10.3390/s24248187
APA StyleLiu, Y., & Tian, J. (2024). Probabilistic Attention Map: A Probabilistic Attention Mechanism for Convolutional Neural Networks. Sensors, 24(24), 8187. https://doi.org/10.3390/s24248187