A Review: Developments in Hardware Systems of Active Ankle Orthoses
Abstract
1. Introduction
2. Design Considerations of Active Ankle Orthoses
2.1. Anatomy of Ankle Joint Complex
2.2. Design Difficulties of Active Ankle Orthoses
2.3. Anthropometric Design in Active Ankle Joints
3. Mechanisms and Actuation Methods
3.1. Electrical Actuator-Based Systems
3.2. Pneumatic Actuator-Based Systems
3.3. Hydraulic Actuator-Based Systems
Actuation Method | Example Orthoses Device | Advantages | Limitations |
---|---|---|---|
SEA [33,38] | Portable knee-ankle-foot orthosis by NUS [26] | Less energy consumption, delivery of variable torque, and modular design | Bulkiness at the lower extremity |
Bowden cable-driven [31] | Soft exosuit by Harvard University [28] | Lightweight and flexibility | Complexity of the overall system |
Motor with cable/gear driven [34,39,40,41] | Autonomous battery- powered exoskeleton by MIT [30] | Precise torque output, higher adaptability | Bulkiness and weight |
PAM [42,43] | Bio-inspired soft orthosis developed by Harvard University [35] | High energy efficiency, natural-like movement | Bulkiness and initial cost |
Pneumatic actuator | Portable powered ankle-foot orthosis by University of Illinois [36] | High energy efficiency, lightweight, and compact | Challenging to ensure stable gas supply and pressure |
Hydraulic actuator | Berkeley lower extremity exoskeleton by University of California [37] | Adjustable torque output | Bulkiness and complexity of the overall system |
4. Control Methods
4.1. EMG-Driven Control Strategy
4.2. Event-Driven Control Strategy
4.3. Model-Driven Control Strategy
4.4. Impedance-Driven Control Strategy
4.5. Hybrid Control Strategy
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Report on Disability Summary. Available online: https://www.who.int/publications/i/item/WHO-NMH-VIP-11.01 (accessed on 16 December 2024).
- Chen, B.; Ma, H.; Qin, L.-Y.; Gao, F.; Chan, K.-M.; Law, S.-W.; Qin, L.; Liao, W.-H. Recent Developments and Challenges of Lower Extremity Exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.M.; Golshani, A.; Gargac, S.; Goswami, T. Biomechanics of the Ankle Joint and Clinical Outcomes of Total Ankle Replacement. J. Mech. Behav. Biomed. Mater. 2008, 1, 276–294. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, A.; Svensson, O.; Nemeth, G.; Selvik, G. The Axis of Rotation of the Ankle Joint. J. Bone Jt. Surgery Br. Vol. 1989, 71-B, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Wang, L.; Li, Y.; Wen, C. Materials and Manufacturing for Ankle-Foot Orthoses: A Review. Adv. Eng. Mater. 2023, 25, 2300238. [Google Scholar] [CrossRef]
- Vallery, H.; Veneman, J.; van Asseldonk, E.; Ekkelenkamp, R.; Buss, M.; van Der Kooij, H. Compliant Actuation of Rehabilitation Robots. IEEE Robot. Autom. Mag. 2008, 15, 60–69. [Google Scholar] [CrossRef]
- Robinson, D.; Howard Pratt, J.; Paluska, D.J.; Pratt, G.A. Series Elastic Actuator Development for a Biomimetic Walking Robot. In Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399), Atlanta, GA, USA, 19–23 September 1999. [Google Scholar] [CrossRef]
- Ferris, D.P.; Czerniecki, J.M.; Hannaford, B. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles. J. Appl. Biomech. 2005, 21, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Gundapaneni, D.; Tsatalis, J.T.; Laughlin, R.T.; Goswami, T. Anthropomorphic Characterization of Ankle Joint. Bioengineering 2023, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lyu, M.; Ding, X.; Wang, J.; Zhang, J. Electromyography-Controlled Lower Extremity Exoskeleton to Provide Wearers Flexibility in Walking. Biomed. Signal Process. Control 2022, 79, 104096. [Google Scholar] [CrossRef]
- Jiménez-Fabián, R.; Verlinden, O. Review of Control Algorithms for Robotic Ankle Systems in Lower-Limb Orthoses, Prostheses, and Exoskeletons. Med. Eng. Phys. 2012, 34, 397–408. [Google Scholar] [CrossRef]
- Galle, S.; Malcolm, P.; Collins, S.H.; De Clercq, D. Reducing the Metabolic Cost of Walking with an Ankle Exoskeleton: Interaction between Actuation Timing and Power. J. NeuroEngineering Rehabil. 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.; Karamanidis, K.; Mademli, L. Deficits in the Way to Achieve Balance Related to Mechanisms of Dynamic Stability Control in the Elderly. J. Biomech. 2008, 41, 1754–1761. [Google Scholar] [CrossRef]
- Gordon, K.E.; Ferris, D.P. Learning to Walk with a Robotic Ankle Exoskeleton. J. Biomech. 2007, 40, 2636–2644. [Google Scholar] [CrossRef] [PubMed]
- Galle, S.; Malcolm, P.; Derave, W.; De Clercq, D. Adaptation to Walking with an Exoskeleton That Assists Ankle Extension. Gait Posture 2013, 38, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Grimston, S.K.; Nigg, B.M.; Hanley, D.A.; Engsberg, J.R. Differences in Ankle Joint Complex Range of Motion as a Function of Age. Foot Ankle 1993, 14, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, R.N. Total Ankle Joint Replacement. Arch. Surg. 1977, 112, 1105. [Google Scholar] [CrossRef]
- Brockett, C.L.; Chapman, G.J. Biomechanics of the Ankle. Orthop. Trauma 2016, 30, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.A. Ankle and Foot. Available online: https://clinicalgate.com/ankle-and-foot/ (accessed on 16 December 2024).
- Fan, Y.; Yin, Y. Mechanism Design and Motion Control of a Parallel Ankle Joint for Rehabilitation Robotic Exoskeleton. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009. [Google Scholar] [CrossRef]
- McKay, J.L.; Ting, L.H. Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts. PLoS Computational Biology 2012, 8, e1002465. [Google Scholar] [CrossRef]
- Bregman, D.J.J.; van der Krogt, M.M.; de Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H. The Effect of Ankle Foot Orthosis Stiffness on the Energy Cost of Walking: A Simulation Study. Clin. Biomech. 2011, 26, 955–961. [Google Scholar] [CrossRef]
- Isman, R.E.; Inman, V.T. Anthropometric Studies of the Human Foot and Ankle; University of California: San Francisco, CA, USA, 1968. [Google Scholar]
- Dwivedi, M.; Shetty, K.D.; Dwivedi, M.; Shetty, K.D.; Nath, L.N. Design and Development of Anthropometric Device for the Standardization of Sizes of Knee-Ankle-Foot Orthoses. J. Med. Eng. Technol. 2009, 33, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Escalona-Marfil, C.; McPoil, T.G.; Mellor, R.; Vicenzino, B. A Radiographic and Anthropometric Study of the Effect of a Contoured Sandal and Foot Orthosis on Supporting the Medial Longitudinal Arch. J. Foot Ankle Res. 2014, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cruz, M.S.; Chen, G.; Huang, S.; Zhu, C.; Chew, E.; Ng, Y.S.; Thakor, N.V. Mechanical Design of a Portable Knee-Ankle-Foot Robot. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013. [Google Scholar] [CrossRef]
- Bolivar, E.; Allen, D.; Ellson, G.; Cossio, J.; Voit, W.; Gregg, R. Towards a Series Elastic Actuator with Electrically Modulated Stiffness for Powered Ankle-Foot Orthoses. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016. [Google Scholar] [CrossRef]
- Asbeck, A.T.; De Rossi, S.M.M.; Holt, K.G.; Walsh, C.J. A Biologically Inspired Soft Exosuit for Walking Assistance. Int. J. Robot. Res. 2015, 34, 744–762. [Google Scholar] [CrossRef]
- Baker, L.; Lee, S.; Long, A.; Kim, J.; Karavas, N.; Menard, N.; Galiana, I.; Walsh, C. Ankle Optimization with a Soft Exosuit Reduces Metabolic Cost of Loaded Walking. In Proceedings of the 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob), Houston, TX, USA, 5–8 November 2017; p. 1. [Google Scholar] [CrossRef]
- Mooney, L.M.; Rouse, E.J.; Herr, H.M. Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking during Load Carriage. J. NeuroEngineering Rehabil. 2014, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Witte, K.A.; Zhang, J.; Jackson, R.W.; Collins, S.H. Design of Two Lightweight, High-Bandwidth Torque-Controlled Ankle Exoskeletons. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1223–1228. [Google Scholar] [CrossRef]
- Browning, R.C.; Modica, J.R.; Kram, R.; Goswami, A. The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking. Med. Sci. Sports Exerc. 2007, 39, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, W.; Meijneke, C.; van der Kooij, H. Evaluation of the Achilles Ankle Exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Gao, X.; Zhao, J.; Jin, F.; Dai, F.; Lv, Y. A Portable Ankle-Foot Rehabilitation Orthosis Powered by Electric Motor. Open Mech. Eng. J. 2015, 9, 982–991. [Google Scholar] [CrossRef]
- Park, Y.; Chen, B.; Young, D.; Stirling, L.; Wood, R.J.; Goldfield, E.; Nagpal, R. Bio-Inspired Active Soft Orthotic Device for Ankle Foot Pathologies. In Proceedings of the IEEE/RSJ International Conference on intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4488–4495. [Google Scholar] [CrossRef]
- Shorter, K.A.; Kogler, G.F.; Loth, E.; Durfee, W.K.; Hsiao-Wecksler, E.T. A Portable Powered Ankle-Foot Orthosis for Rehabilitation. J. Rehabil. Res. Dev. 2011, 48, 459. [Google Scholar] [CrossRef]
- Zoss, A.B.; Kazerooni, H.; Chu, A. Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE ASME Trans. Mechatron. 2006, 11, 128–138. [Google Scholar] [CrossRef]
- Kirtas, O.; Savas, Y.; Bayraker, M.; Baskaya, F.; Basturk, H.; Samur, E. Design, Implementation, and Evaluation of a Backstepping Control Algorithm for an Active Ankle–Foot Orthosis. Control Eng. Pract. 2021, 106, 104667. [Google Scholar] [CrossRef]
- Moltedo, M.; Baček, T.; Langlois, K.; Junius, K.; Vanderborght, B.; Lefeber, D. Design and Experimental Evaluation of a Lightweight, High-Torque and Compliant Actuator for an Active Ankle Foot Orthosis. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017. [Google Scholar] [CrossRef]
- Mu, Z.; Zhang, Q.; Yang, G.-Y.; Xie, L.; Fang, J. Development of an Improved Rotational Orthosis for Walking with Arm Swing and Active Ankle Control. Front. Neurorobotics 2020, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Sarma, T.; Kumar Saxena, K.; Majhi, V.; Pandey, D.; Prakash Tewari, R.; Sahai, N. Development of Active Ankle Foot Orthotic Device. Mater. Today Proc. 2020, 26, 918–921. [Google Scholar] [CrossRef]
- Thalman, C.M.; Hertzell, T.; Debeurre, M.; Lee, H. Multi-Degrees-of-Freedom Soft Robotic Ankle-Foot Orthosis for Gait Assistance and Variable Ankle Support. Wearable Technol. 2022, 3, e18. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Lee, C.H.; Baek, Y.S. Design and Validation of a Two-Degree-of-Freedom Powered Ankle-Foot Orthosis with Two Pneumatic Artificial Muscles. Mechatronics 2020, 72, 102469. [Google Scholar] [CrossRef]
- Tucker, M.R.; Olivier, J.; Pagel, A.; Bleuler, H.; Bouri, M.; Lambercy, O.; Millán, J.d.R.; Riener, R.; Vallery, H.; Gassert, R. Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review. J. NeuroEngineering Rehabil. 2015, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.K.; Venkat Rao, V.; Jayalakshmi, N.S. Review of the Evolution of Magnetorheological Fluid-Based Rehabilitative Devices: From the Perspective of Modelling, Sensors and Control Strategies. IEEE Access 2023, 11, 1. [Google Scholar] [CrossRef]
- Nazmi, N.; Azizi Abdul Rahman, M.; Amri Mazlan, S.; Adiputra, D.; Bahiuddin, I.; Kashfi Shabdin, M.; Afifah Abdul Razak, N.; Hatta Mohammed Ariff, M. Analysis of EMG Signals during Stance and Swing Phases for Controlling Magnetorheological Brake Applications. Open Eng. 2020, 11, 112–119. [Google Scholar] [CrossRef]
- Joshi, C.D.; Lahiri, U.; Thakor, N.V. Classification of Gait Phases from Lower Limb EMG: Application to Exoskeleton Orthosis. In Proceedings of the 2013 IEEE Point-of-Care Healthcare Technologies (PHT), Bangalore, India, 16–18 January 2013; pp. 228–231. [Google Scholar] [CrossRef]
- Florenciano Restoy, J.L.; Solé-Casals, J.; Borràs-Boix, X. IMU-Based Effects Assessment of the Use of Foot Orthoses in the Stance Phase during Running and Asymmetry between Extremities. Sensors 2021, 21, 3277. [Google Scholar] [CrossRef]
- Saeed, M.T.; Gul, J.Z.; Kausar, Z.; Mughal, A.M.; Din, Z.M.U.; Qin, S. Design of Model-Based and Model-Free Robust Control Strategies for Lower Limb Rehabilitation Exoskeletons. Appl. Sci. 2022, 12, 3973. [Google Scholar] [CrossRef]
- Hasan, S.K. A Realistic Model Reference Computed Torque Control Strategy for Human Lower Limb Exoskeletons. Actuators 2024, 13, 445. [Google Scholar] [CrossRef]
- Aguirre-Ollinger, G.; Edward Colgate, J.; Peshkin, M.A.; Goswami, A. Active-Impedance Control of a Lower-Limb Assistive Exoskeleton. In Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007. [Google Scholar] [CrossRef]
- Blaya, J.A.; Herr, H. Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 24–31. [Google Scholar] [CrossRef]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-In-The-Loop Optimization of Exoskeleton Assistance during Walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunaratne, P.N.; Tamura, H. A Review: Developments in Hardware Systems of Active Ankle Orthoses. Sensors 2024, 24, 8153. https://doi.org/10.3390/s24248153
Gunaratne PN, Tamura H. A Review: Developments in Hardware Systems of Active Ankle Orthoses. Sensors. 2024; 24(24):8153. https://doi.org/10.3390/s24248153
Chicago/Turabian StyleGunaratne, Praveen Nuwantha, and Hiroki Tamura. 2024. "A Review: Developments in Hardware Systems of Active Ankle Orthoses" Sensors 24, no. 24: 8153. https://doi.org/10.3390/s24248153
APA StyleGunaratne, P. N., & Tamura, H. (2024). A Review: Developments in Hardware Systems of Active Ankle Orthoses. Sensors, 24(24), 8153. https://doi.org/10.3390/s24248153