Understanding the Interaction of Röntgen Radiation Employed in Computed Tomography/Cone Beam Computed Tomography Investigations of the Oral Cavity by Means of Surface-Enhanced Raman Spectroscopy Analysis of Saliva
Abstract
1. Introduction
2. Materials and Methods
2.1. Saliva Sample Collection and Processing
2.2. SERS Substrate Preparation
2.3. SERS Analysis of Salivary Samples
3. Results
3.1. Data on the Batches Included in This Study
3.2. SERS Substrates Physico-Chemical Characterization
3.3. SERS Measurement Results
3.3.1. SERS Measurements of CT Batch
3.3.2. SERS Measurement of CBCT Batch
4. Discussion
- Part of the energy will be stored differently at the tissue level, and this could lead to biochemical repercussions at the molecular level;
- A part of the incident beam will follow an exit path following a disjunct trajectory.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabega, C. Chimie Generală; Editura Didactică și Pedagogică: București, Romania, 1970. [Google Scholar]
- White, S.C.; Pharoah, M.J. Oral Radiology. Principles and Interpretation, 6th ed.; White, S.C., Pharoah, M.J., Eds.; MOSBY ELSEVIER: Oxford, UK, 2009. [Google Scholar]
- Miracle, A.C.; Mukherji, S.K. Conebeam CT of the Head and Neck, Part 1: Physical Principles. Am. J. Neuroradiol. 2009, 30, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, R.; Araki, K.; Siewerdsen, J.H.; Thongvigitmanee, S.S. Technical Aspects of Dental CBCT: State of the Art. Dentomaxillofacial Radiol. 2015, 44, 20140224. [Google Scholar] [CrossRef]
- Mallya, S.M.; Diplomate, P. White and Pharoah’s Oral Radiology: Principles and Interpretation, 8th ed.; ELSEVIER: St. Louis, MO, USA, 2019. [Google Scholar]
- Faur, C.I.; Dinu, C.; Toma, V.; Jurj, A.; Mărginean, R.; Onaciu, A.; Roman, R.C.; Culic, C.; Chirilă, M.; Rotar, H.; et al. A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes. J. Pers. Med. 2023, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Borșa, R.-M.; Toma, V.; Onaciu, A.; Moldovan, C.-S.; Mărginean, R.; Cenariu, D.; Știufiuc, G.-F.; Dinu, C.-M.; Bran, S.; Opriș, H.-O.; et al. Developing New Diagnostic Tools Based on SERS Analysis of Filtered Salivary Samples for Oral Cancer Detection. Int. J. Mol. Sci. 2023, 24, 12125. [Google Scholar] [CrossRef]
- Munteanu, V.C.; Munteanu, R.A.; Gulei, D.; Mărginean, R.; Schițcu, V.H.; Onaciu, A.; Toma, V.; Știufiuc, G.F.; Coman, I.; Știufiuc, R.I. New Insights into the Multivariate Analysis of SER Spectra Collected on Blood Samples for Prostate Cancer Detection: Towards a Better Understanding of the Role Played by Different Biomolecules on Cancer Screening: A Preliminary Study. Cancers 2022, 14, 3227. [Google Scholar] [CrossRef]
- Știufiuc, R.-I.; Iacoviță, C.; Știufiuc, G.-F. Metode Moderne de Investigare a Unor Nanoobiecte Cu Aplicații Biomedicale; Pop, G., Ed.; Risoprint: Cluj-Napoca, Romania, 2013. [Google Scholar]
- de Almeida, P.D.V.; Grégio, A.M.T.; Machado, M.A.N.; de Lima, A.A.S.; Azevedo, L.R. Saliva Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 72–80. [Google Scholar]
- Mandel, I.D. Impact of Saliva on Dental Caries. Compend. Suppl. 1989, 13, S476–S481. [Google Scholar]
- Mandel, I.D. The Role of Saliva in Maintaining Oral Homeostasis. J. Am. Dent. Assoc. 1989, 119, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.; Kelleher, L.; de Carvalho Gomes, P.; Buchan, E.; Chu, H.O.M.; Goldberg Oppenheimer, P. Methods in Raman Spectroscopy for Saliva Studies—A Review. Appl. Spectrosc. Rev. 2022, 57, 177–233. [Google Scholar] [CrossRef]
- Fălămaș, A.; Rotaru, H.; Hedeșiu, M. Surface-Enhanced Raman Spectroscopy (SERS) Investigations of Saliva for Oral Cancer Diagnosis. Lasers Med. Sci. 2020, 35, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Moisoiu, V.; Badarinza, M.; Stefancu, A.; Iancu, S.D.; Serban, O.; Leopold, N.; Fodor, D. Combining Surface-Enhanced Raman Scattering (SERS) of Saliva and Two-Dimensional Shear Wave Elastography (2D-SWE) of the Parotid Glands in the Diagnosis of Sjögren’s Syndrome. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 235, 118267. [Google Scholar] [CrossRef] [PubMed]
- Berus, S.M.; Nowicka, A.B.; Wieruszewska, J.; Niciński, K.; Kowalska, A.A.; Szymborski, T.R.; Dróżdż, I.; Borowiec, M.; Waluk, J.; Kamińska, A. SERS Signature of SARS-CoV-2 in Saliva and Nasopharyngeal Swabs: Towards Perspective COVID-19 Point-of-Care Diagnostics. Int. J. Mol. Sci. 2023, 24, 9706. [Google Scholar] [CrossRef]
- Lin, X.; Weng, Y.; Liu, Y.; Lin, D.; Yang, H.; Chen, Z.; Feng, S. Ratiometric SERS Sensing Chip for High Precision and Ultra-Sensitive Detection of SARS-CoV-2 RNA in Human Saliva. Sens. Actuators B Chem. 2024, 399, 134803. [Google Scholar] [CrossRef]
- Kanioura, A.; Geka, G.; Kochylas, I.; Likodimos, V.; Gardelis, S.; Dimitriou, A.; Papanikolaou, N.; Kakabakos, S.; Petrou, P. SERS Determination of Oxidative Stress Markers in Saliva Using Substrates with Silver Nanoparticle-Decorated Silicon Nanowires. Biosensors 2023, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Colceriu-Şimon, I.M.; Hedeşiu, M.; Toma, V.; Armencea, G.; Moldovan, A.; Ştiufiuc, G.; Culic, B.; Ţărmure, V.; Dinu, C.; Berindan-Neagoe, I.; et al. The Effects of Low-Dose Irradiation on Human Saliva: A Surface-Enhanced Raman Spectroscopy Study. Diagnostics 2019, 9, 101. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, Y.; Huang, L.; Zheng, W.; Huang, C.; Huang, S.; Lin, J.; Lin, D.; Feng, S.; Chen, R.; et al. Non-Invasive Detection of Nasopharyngeal Carcinoma Using Saliva Surface-Enhanced Raman Spectroscopy. Oncol. Lett. 2016, 11, 884–890. [Google Scholar] [CrossRef]
- Wong, M. Surface-Enhanced Raman Spectroscopy for Forensic Analysis of Human Saliva. Master’s Thesis, Boston University, Boston, MA, USA, 2017. [Google Scholar]
- Derruau, S.; Robinet, J.; Untereiner, V.; Piot, O.; Sockalingum, G.D.; Lorimier, S. Vibrational Spectroscopy Saliva Profiling as Biometric Tool for Disease Diagnostics: A Systematic Literature Review. Molecules 2020, 25, 4142. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, T.; Lin, J. Spectral Analysis of Human Saliva for Detection of Lung Cancer Using Surface-Enhanced Raman Spectroscopy. J. Biomed. Opt. 2012, 17, 037003. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, Z.; Li, X. Non-Invasive Disease Diagnosis Using Surface-Enhanced Raman Spectroscopy of Urine and Saliva. Appl. Spectrosc. Rev. 2020, 55, 197–219. [Google Scholar] [CrossRef]
- Koster, H.J.; Guillen-Perez, A.; Gomez-Diaz, J.S.; Navas-Moreno, M.; Birkeland, A.C.; Carney, R.P. Fused Raman Spectroscopic Analysis of Blood and Saliva Delivers High Accuracy for Head and Neck Cancer Diagnostics. Sci. Rep. 2022, 12, 18464. [Google Scholar] [CrossRef]
- Buchan, E.; Kelleher, L.; Clancy, M.; Stanley Rickard, J.J.; Oppenheimer, P.G. Spectroscopic Molecular-Fingerprint Profiling of Saliva. Anal. Chim. Acta 2021, 1185, 339074. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Lin, D.; Lin, J.; Huang, Z.; Chen, G.; Li, Y.; Huang, S.; Zhao, J.; Chen, R.; Zeng, H. Saliva Analysis Combining Membrane Protein Purification with Surface-Enhanced Raman Spectroscopy for Nasopharyngeal Cancer Detection. Appl. Phys. Lett. 2014, 104, 073702. [Google Scholar] [CrossRef]
- Hernández-Arteaga, A.; de Jesús Zermeño Nava, J.; Kolosovas-Machuca, E.S.; Velázquez-Salazar, J.J.; Vinogradova, E.; José-Yacamán, M.; Navarro-Contreras, H.R. Diagnosis of Breast Cancer by Analysis of Sialic Acid Concentrations in Human Saliva by Surface-Enhanced Raman Spectroscopy of Silver Nanoparticles. Nano Res. 2017, 10, 3662–3670. [Google Scholar] [CrossRef]
- Meenapriya, P. Raman Spectroscopic Analysis of Blood, Urine, Saliva and Tissue of Oral Potentially Malignant Disorders and Malignancy-A Diagnostic Study. Int. J. Oral Craniofacial Sci. 2016, 2, 011–014. [Google Scholar] [CrossRef]
- Lin, X.; Lin, D.; Ge, X.; Qiu, S.; Feng, S.; Chen, R. Noninvasive Detection of Nasopharyngeal Carcinoma Based on Saliva Proteins Using Surface-Enhanced Raman Spectroscopy. J. Biomed. Opt. 2017, 22, 1. [Google Scholar] [CrossRef]
- Lee, C.; Carney, R.P.; Hazari, S.; Smith, Z.J.; Knudson, A.; Robertson, C.S.; Lam, K.S.; Wachsmann-Hogiu, S. 3D Plasmonic Nanobowl Platform for the Study of Exosomes in Solution. Nanoscale 2015, 7, 9290–9297. [Google Scholar] [CrossRef] [PubMed]
- Maitra, I.; Morais, C.L.M.; Lima, K.M.G.; Ashton, K.M.; Date, R.S.; Martin, F.L. Attenuated Total Reflection Fourier-Transform Infrared Spectral Discrimination in Human Bodily Fluids of Oesophageal Transformation to Adenocarcinoma. Analyst 2019, 144, 7447–7456. [Google Scholar] [CrossRef] [PubMed]
- Maitra, I.; Morais, C.L.M.; Lima, K.M.G.; Ashton, K.M.; Date, R.S.; Martin, F.L. Raman Spectral Discrimination in Human Liquid Biopsies of Oesophageal Transformation to Adenocarcinoma. J. Biophoton. 2020, 13, e201960132. [Google Scholar] [CrossRef]
- Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S. Raman Spectroscopy of Saliva as a Perspective Method for Periodontitis Diagnostics. Laser Phys. Lett. 2012, 9, 73–77. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Forensic Body Fluid Identification: The Raman Spectroscopic Signature of Saliva. Analyst 2010, 135, 512–517. [Google Scholar] [CrossRef]
- Rekha, P.; Aruna, P.; Brindha, E.; Koteeswaran, D.; Baludavid, M.; Ganesan, S. Near-infrared Raman Spectroscopic Characterization of Salivary Metabolites in the Discrimination of Normal from Oral Premalignant and Malignant Conditions. J. Raman Spectrosc. 2016, 47, 763–772. [Google Scholar] [CrossRef]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection. Antioxid. Redox Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef] [PubMed]
- Nemes, J.L.; Wheatcroft, M.G.; Leopold, R.S. Effects of Total Body X-Radiation on Salivary Components of Dogs. J. Dent. Res. 1952, 31, 603–608. [Google Scholar] [CrossRef]
- Pienpinijtham, P.; Han, X.X.; Ekgasit, S.; Ozaki, Y. Highly Sensitive and Selective Determination of Iodide and Thiocyanate Concentrations Using Surface-Enhanced Raman Scattering of Starch-Reduced Gold Nanoparticles. Anal. Chem. 2011, 83, 3655–3662. [Google Scholar] [CrossRef]
- Bai, X.-R.; Zhang, L.; Ren, J.-Q.; Shen, A.-G.; Hu, J.-M. The Small Silver Nanoparticle-Assisted Homogeneous Sensing of Thiocyanate Ions with an Ultra-Wide Window Based on Surface-Enhanced Raman-Extinction Spectroscopy. Anal. Methods 2021, 13, 1049–1057. [Google Scholar] [CrossRef]
- Gaidhani, K.A.; Harwalkar, M.; Nirgude, P.S. World Journal of Pharmaceutical ReseaRch SEED EXTRACTS. World J. Pharm. Res. 2014, 3, 5041–5048. [Google Scholar]
- Wisner, A.; Dufour, E.; Messaoudi, M.; Nejdi, A.; Marcel, A.; Ungeheuer, M.-N.; Rougeot, C. Human Opiorphin, a Natural Antinociceptive Modulator of Opioid-Dependent Pathways. Proc. Natl. Acad. Sci. USA 2006, 103, 17979–17984. [Google Scholar] [CrossRef]
- Zhang, C.-Z.; Cheng, X.-Q.; Li, J.-Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.-D. Saliva in the Diagnosis of Diseases. Int. J. Oral Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef]
- Calado, G.; Behl, I.; Byrne, H.J.; Lyng, F.M. Raman Spectroscopic Characterisation of Non Stimulated and Stimulated Human Whole Saliva. Clin. Spectrosc. 2021, 3, 100010. [Google Scholar] [CrossRef]
- Kho, K.W.; Fu, C.Y.; Dinish, U.S.; Olivo, M. Clinical SERS: Are We There Yet? J. Biophotonics 2011, 4, 667–684. [Google Scholar] [CrossRef]
- Stefancu, A.; Badarinza, M.; Moisoiu, V.; Iancu, S.D.; Serban, O.; Leopold, N.; Fodor, D. SERS-Based Liquid Biopsy of Saliva and Serum from Patients with Sjögren’s Syndrome. Anal. Bioanal. Chem. 2019, 411, 5877–5883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Silva, A.C.; Zhang, W.; Rutigliano, H.; Zhou, A. Raman Spectroscopy Characterization Extracellular Vesicles from Bovine Placenta and Peripheral Blood Mononuclear Cells. PLoS ONE 2020, 15, e0235214. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Huang, S.; Lin, D.; Chen, G.; Xu, Y.; Li, Y.; Huang, Z.; Pan, J.; Chen, R.; Zeng, H. Surface-Enhanced Raman Spectroscopy of Saliva Proteins for the Noninvasive Differentiation of Benign and Malignant Breast Tumors. Int. J. Nanomed. 2015, 10, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Stremersch, S.; Marro, M.; Pinchasik, B.E.; Baatsen, P.; Hendrix, A.; De Smedt, S.C.; Loza-Alvarez, P.; Skirtach, A.G.; Raemdonck, K.; Braeckmans, K. Identification of Individual Exosome-like Vesicles by Surface Enhanced Raman Spectroscopy. Small 2016, 12, 3292–3301. [Google Scholar] [CrossRef] [PubMed]
Vibrational Band (cm−1) | Assignment | Post-Irradiation Increase in Band Intensities After CT (%) | Post-Irradiation Increase in Band Intensities After CBCT (%) |
---|---|---|---|
446 | Thiocyanate, phenylalanine [20,21,22] | 100 ± 1.9 | 25 ± 0.6 |
729 | Hypoxanthine, tryptophan, coenzyme A, nucleic acids, thiocyanate [20,21,22,23,24,25] | 77 ± 1.8 | 49 ± 0.8 |
1002 | L-Phenylalanine, uric acid, opiorphin, pyranose [7,20,26,27,28,29] | 95 ± 1.3 | 21 ± 0.6 |
1444/1446 | Mucin matrix, collagen, phospholipids [21,26,28,30,31] | 129 ± 1.8 | 38 ± 0.9 |
1601/1608 | Phenylalanine, adenine [32,33,34] | 154 ± 2.1 | 63 ± 1.4 |
1656 | Amide I, nucleic acids, glutathione [20,23,30,35,36,37] | 129 ± 2.1 | 47 ± 1.1 |
2108 | Thiocyanate [14,20,22] | 67 ± 1.2 | 26 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borșa, R.-M.; Toma, V.; Nășcuțiu, M.-T.; Onaciu, A.; Colceriu-Șimon, I.-M.; Băciuț, G.; Bran, S.; Dinu, C.-M.; Onișor, F.; Armencea, G.; et al. Understanding the Interaction of Röntgen Radiation Employed in Computed Tomography/Cone Beam Computed Tomography Investigations of the Oral Cavity by Means of Surface-Enhanced Raman Spectroscopy Analysis of Saliva. Sensors 2024, 24, 8021. https://doi.org/10.3390/s24248021
Borșa R-M, Toma V, Nășcuțiu M-T, Onaciu A, Colceriu-Șimon I-M, Băciuț G, Bran S, Dinu C-M, Onișor F, Armencea G, et al. Understanding the Interaction of Röntgen Radiation Employed in Computed Tomography/Cone Beam Computed Tomography Investigations of the Oral Cavity by Means of Surface-Enhanced Raman Spectroscopy Analysis of Saliva. Sensors. 2024; 24(24):8021. https://doi.org/10.3390/s24248021
Chicago/Turabian StyleBorșa, Rareș-Mario, Valentin Toma, Melania-Teodora Nășcuțiu, Anca Onaciu, Ioana-Maria Colceriu-Șimon, Grigore Băciuț, Simion Bran, Cristian-Mihail Dinu, Florin Onișor, Gabriel Armencea, and et al. 2024. "Understanding the Interaction of Röntgen Radiation Employed in Computed Tomography/Cone Beam Computed Tomography Investigations of the Oral Cavity by Means of Surface-Enhanced Raman Spectroscopy Analysis of Saliva" Sensors 24, no. 24: 8021. https://doi.org/10.3390/s24248021
APA StyleBorșa, R.-M., Toma, V., Nășcuțiu, M.-T., Onaciu, A., Colceriu-Șimon, I.-M., Băciuț, G., Bran, S., Dinu, C.-M., Onișor, F., Armencea, G., Culic, C., Hedeșiu, M.-C., Știufiuc, R.-I., & Băciuț, M.-F. (2024). Understanding the Interaction of Röntgen Radiation Employed in Computed Tomography/Cone Beam Computed Tomography Investigations of the Oral Cavity by Means of Surface-Enhanced Raman Spectroscopy Analysis of Saliva. Sensors, 24(24), 8021. https://doi.org/10.3390/s24248021