An Elastic Filtering Algorithm with Visual Perception for Vehicle GNSS Navigation and Positioning
Abstract
:1. Introduction
2. Vehicle GNSS Constant Speed and Constant Acceleration Model Based on Kalman Filter
3. The Proposed Method
3.1. Vehicle State Assessment Theory and Methods
3.1.1. Introduction to Experimental Equipment
3.1.2. Inter-Frame Differential Optical Flow Method
3.1.3. Vehicle State Assessment Method
3.2. Zero-Speed Constraint
3.3. Multi-Mode Elastic Constraints
Algorithm 1: An Elastic Filtering Algorithm with Visual Perception for Vehicle GNSS Navigation and Positioning |
Begin
Predictive module If vehicle stationary Establish an elastic constraint model using Formulas (1), (2) and (17). Else if vehicle motion if vehicle turning Establish an elastic constraint model using Formulas (18)–(20). Establish a zero-speed constraint model using Formulas (16) and (17). else if vehicle acceleration Establish an elastic constraint model using Formulas (1), (2) and (6). else if vehicle constant Establish an elastic constraint model using Formulas (1), (2) and (7). else if vehicle deceleration Establish an elastic constraint model using Formulas (1) and (2) and modifying the parameters of Formula (7) to be negative. end End Update the module Design state update using Formulas (3)–(5).
End |
4. Experimental Verification and Analysis
4.1. Simulation Experiment
4.2. Actual Experiment
4.2.1. Data Collection for Experiments
4.2.2. Actual Experiment Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, C.; Guo, R.; Chen, Q.; Niu, X. Extending the Real-Time Kinematics Survey Method to Global Navigation Satellite System-Denied Areas Using a Low-Cost Inertial-Aided Positioning Pole. Navig. J. Inst. Navig. 2023, 70, navi.584. [Google Scholar] [CrossRef]
- Yang, H.; Dong, S.; Xie, C. High-speed train positioning based on a combination of Beidou navigation, inertial navigation and an electronic map. Sci. China Inf. Sci. 2023, 66, 172207. [Google Scholar] [CrossRef]
- Iyer, K.; Dey, A.; Xu, B.; Sharma, N.; Hsu, L.-T. Enhancing Positioning in GNSS Denied Environments Based on an Extended Kalman Filter Using Past GNSS Measurements and IMU. IEEE Trans. Veh. Technol. 2024, 73, 7908–7924. [Google Scholar] [CrossRef]
- Srisomboon, I.; Lee, S. Positioning and Navigation Approaches Using Packet Loss-Based Multilateration for UAVs in GPS-Denied Environments. IEEE Access 2024, 12, 13355–13369. [Google Scholar] [CrossRef]
- Xu, S.; Yang, Q.; Du, X.; Xu, X.; Zhao, Q.; Yang, L.; Qin, Y.; Guo, J. Multi-GNSS Precise Point Positioning enhanced by the real navigation signals from CENTISPACETM LEO mission. Adv. Space Res. 2024, 73, 4175–4186. [Google Scholar] [CrossRef]
- Niu, X.; Dai, Y.; Liu, T.; Chen, Q.; Zhang, Q. Feature-based GNSS positioning error consistency optimization for GNSS/INS integrated system. GPS Solut. 2023, 27, 89. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, L.; Gong, Y.; Liu, T.; Yuan, H. An algorithm of GNSS/5G robust filtering joint positioning. J. Navig. Position. 2023, 11, 139–146. [Google Scholar]
- Zováthi, Ö.; Pálffy, B.; Benedek, C. Real-time vehicle localization and pose tracking in high-resolution 3D maps. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022. [Google Scholar]
- Ling, Y. Research on Vehicle Detection and Positioning Technology Based on Multi-Sensor Information fusion. Master’s Thesis, Hunan University, Changsha, China, 2019. [Google Scholar]
- Jondhale, S.; Deshpande, R. Tracking target with constant acceleration motion using kalman filtering. In Proceedings of the 2018 International Conference on Advances in Communication and Computing Technology (ICACCT), Sangamner, India, 8–9 February 2018. [Google Scholar]
- Zhang, K.; Jiao, W.; Wang, L.; Li, Z.; Li, J.; Zhou, K. Smart-RTK: Multi-GNSS kinematic positioning approach on android smart devices with Doppler-smoothed-code filter and constant acceleration model. Adv. Space Res. 2019, 64, 1662–1674. [Google Scholar] [CrossRef]
- Duan, J.; Shi, H.; Liu, D.; Yu, H. Square root cubature kalman filter-kalman filter algorithm for intelligent vehicle position estimate. Procedia Eng. 2016, 137, 267–276. [Google Scholar] [CrossRef]
- Kaur, H.; Sahambi, J. Vehicle tracking using fractional order Kalman filter for the non-linear system. In Proceedings of the International Conference on Computing, Communication & Automation, Greater Noida, India, 15–16 May 2015. [Google Scholar]
- Zhang, Q.; Zhao, L.; Zhao, L.; Zhou, J. An improved robust adaptive kalman filter for GNSS precise point positioning. IEEE Sens. J. 2018, 18, 4176–4186. [Google Scholar] [CrossRef]
- Wang, X.; Cui, X.; Gao, T. A new adaptive estimation algorithm based on CT model and ellipsoid constraint. In C China Satellite Navigation Conference (CSNC) 2020 Proceedings; Sun, J.D., Yang, C.F., Xie, J., Eds.; Springer: Singapore, 2020; Volume I. [Google Scholar]
- Ying, Z.; Li, H. IMM-SLAMMOT: Tightly-Coupled SLAM and IMM-Based Multi-Object Tracking. IEEE Trans. Intell. Veh. 2024, 9, 3964–3974. [Google Scholar] [CrossRef]
- Pant, B.; Alkin, O. Correlated movement mobility model and constant acceleration model for EKF-based tracking applications. In Proceedings of the 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 8–10 October 2012. [Google Scholar]
- Bai, L.; Sun, C.; Dempster, A.; Zhao, H.; Cheong, J.; Feng, W. GNSS-5G hybrid positioning based on multi-rate measurements fusion and proactive measurement uncertainty prediction. IEEE Trans. Instrum. Meas. 2022, 71, 8501415. [Google Scholar] [CrossRef]
- Zhang, B.; Wan, Y.; Sun, C.; Yao, Q.; Fang, G. An interacting multiple model algorithm based on cubature kalman filter. In Proceedings of the 2023 4th China International SAR Symposium (CISS), Xian, China, 4–6 December 2023. [Google Scholar]
- Liu, T. Research and Implementation of Precision Single-Point Positioning Performance Enhancement Method. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2023. [Google Scholar]
- Yu, Z.; Li, R.; Wang, Z.; Liu, P.; Lv, Z. Design of the interactive multimode adaptive cubature Kalman filtering algorithm and its application in tracked vehicle tracking. Fire Control Command. Control 2023, 48, 47–52. [Google Scholar]
- Liu, C.; Li, B.; Chen, W. Road network based vehicle navigation using an improved IMM particle filter. IFAC Proc. Vol. 2013, 46, 193–198. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Chung, C. Interacting multiple model kalman filter based vehicle lateral motion estimation under various road surface conditions. In Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, 21–24 August 2018. [Google Scholar]
- Gao, D.; Zhao, H.; Zhuang, C. A method for estimating the positioning accuracy of vehicles in urban environments. In Proceedings of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation, Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Sun, R.; Wang, G.; Cheng, Q.; Fu, L.; Chiang, K.; Hsu, L.; Ochieng, W. Improving GPS Code Phase Positioning Accuracy in Urban Environments Using Machine Learning. IEEE Internet Things J. 2021, 8, 7065–7078. [Google Scholar] [CrossRef]
- Liu, X.; Wen, W.; Hsu, L. GLIO: Tightly-coupled GNSS/LiDAR/IMU integration for continuous and drift-free state estimation of intelligent vehicles in urban areas. IEEE Trans. Intell. Veh. 2024, 9, 1412–1422. [Google Scholar] [CrossRef]
- Xiong, K.; He, X.; Wang, C.; Li, J.; Yang, C. The calibration method of the fisheye camera for high-precision collimation measurement. Infrared Laser Eng. 2024, 53, 117–127. [Google Scholar]
- Dong, Y.; Pei, M.; Wu, Y.; Jia, Y. Stitching images from a conventional camera and a fisheye camera based on nonrigid warping. Multimed. Tools Appl. 2022, 81, 18417–18435. [Google Scholar] [CrossRef]
- Zhang, Y.; You, S.; Karaoglu, S.; Gevers, T. Multi-person 3D pose estimation from a single image captured by a fisheye camera. Comput. Vis. Image Underst. 2022, 222, 103505. [Google Scholar] [CrossRef]
- Hu, H.; Yan, Y.; Ou, M.; Peng, X. Application of fuzzy logic-based adaptive strong tracking Kalman filtering in GPS positioning. Glob. Position. Syst. 2017, 42, 6–11. [Google Scholar]
- Wang, W.; Sun, H.; Jin, Y.; Fu, M.; Li, K.; Zhang, W. Low-speed unmanned vehicle localization based on sensor fusion of low-cost stereo camera and IMU. In Proceedings of the 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), Tianjin, China, 29–31 October 2021. [Google Scholar]
Equipment Content | Performance Specification and Parameter |
---|---|
DW800 wide-angle fisheye camera | Horizontal field of view of 150° for continuous information acquisition and stable delivery of video images. |
Lens center (pixel) | (343, 248) |
Focal length (pixel) | 218 |
Image pixel (pixel) | 640 × 480 |
Image acquisition rate (frame) | 20 per second |
Vehicle Motion States | Stationary | Constant Acceleration | Constant Speed | Constant Deceleration | Turning |
---|---|---|---|---|---|
Corresponding image epoch (specification: 20 frames per second) | 1–2400, 9189–10,533, 14,321–15,482 | 2401–2680, 10,534–10,766, | 2681–3655, 3859–4623, 4913–6464, 6699–7854, 8138–9014, 10,767–11,973, 12,234–13,846 | 9015–9188, 13,847–14,320 | 3656–3858, 4624–4912, 6465–6698, 7855–8137, 11,974–12,233 |
Vehicle Motion States | Stationary | Constant Acceleration | Constant Speed | Constant Deceleration | Turning |
---|---|---|---|---|---|
Time(s) | 1.0–30.0; 197.1–227.0; | 31.1–40.0; 118.1–128.0; | 40.1–70.0; 79.1–109.0; 128.1–148.0; 167.1–187.0 | 148.1–158.0; 187.1–197.0 | 70.1–79.0; 109.1–118.0; 158.1–167.0; |
ME (m) | RMSE (m) | |||||
---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |
Least Squares | 2.5221 | 2.3345 | 2.4798 | 2.9599 | 2.9892 | 3.0211 |
Constant Acceleration | 0.7958 | 1.3955 | 0.6645 | 0.8002 | 1.4116 | 0.6403 |
Constant Velocity | 1.0264 | 1.5787 | 0.5585 | 1.1997 | 1.7803 | 0.5922 |
Constant Deceleration | 0.9255 | 1.2564 | 0.6789 | 1.0729 | 1.3155 | 0.6417 |
IMM | 0.7206 | 1.0344 | 0.5498 | 0.7866 | 1.0457 | 0.6183 |
This experiment method | 0.6525 | 0.7041 | 0.5549 | 0.6703 | 0.7764 | 0.5414 |
ME (m) | RMSE (m) | |||||
---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |
Least Squares | 2.4005 | 2.3367 | 2.3788 | 2.9715 | 2.9588 | 2.9899 |
Constant Acceleration | 0.8744 | 0.8366 | 0.6784 | 1.0498 | 1.0579 | 0.8496 |
Constant Velocity | 0.6277 | 0.6200 | 0.6988 | 0.7746 | 0.8154 | 0.8428 |
Constant Deceleration | 0.7754 | 0.7156 | 0.6994 | 0.7452 | 0.7819 | 0.7624 |
IMM | 0.6825 | 0.6577 | 0.6274 | 0.7508 | 0.7311 | 0.8267 |
This experiment method | 0.4778 | 0.4356 | 0.4561 | 0.5876 | 0.5787 | 0.5684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Yue, Z.; Lian, Z.; Li, K.; Sun, C.; Zhang, M. An Elastic Filtering Algorithm with Visual Perception for Vehicle GNSS Navigation and Positioning. Sensors 2024, 24, 8019. https://doi.org/10.3390/s24248019
Ma W, Yue Z, Lian Z, Li K, Sun C, Zhang M. An Elastic Filtering Algorithm with Visual Perception for Vehicle GNSS Navigation and Positioning. Sensors. 2024; 24(24):8019. https://doi.org/10.3390/s24248019
Chicago/Turabian StyleMa, Wenzhuo, Zhe Yue, Zengzeng Lian, Kezhao Li, Chenchen Sun, and Mengshuo Zhang. 2024. "An Elastic Filtering Algorithm with Visual Perception for Vehicle GNSS Navigation and Positioning" Sensors 24, no. 24: 8019. https://doi.org/10.3390/s24248019
APA StyleMa, W., Yue, Z., Lian, Z., Li, K., Sun, C., & Zhang, M. (2024). An Elastic Filtering Algorithm with Visual Perception for Vehicle GNSS Navigation and Positioning. Sensors, 24(24), 8019. https://doi.org/10.3390/s24248019