MFF-Net: A Lightweight Multi-Frequency Network for Measuring Heart Rhythm from Facial Videos
Abstract
:1. Introduction
- (1)
- A multi-frequency mode signal decomposition module based on empirical mode decomposition is introduced. This module enables the network to model characteristics separately across different frequency bands, effectively mitigating illumination variation and motion artifact disturbances while preserving the integrity of heart rhythm.
- (2)
- A multi-frequency mode signal composition module is presented. This module utilizes a temporal multiscale convolution and a spectrum-based attention mechanism to effectively capture heart rhythm while optimizing computational resource usage.
- (3)
- An over-sampling training scheme is implemented in MFF-Net. This approach aims to further reduce the risk of over-fitting in limited datasets.
2. Related Work
2.1. Unsupervised Models for Remote Photo-Plethysmography
2.2. Deep Learning Models for Remote Photo-Plethysmography
2.3. Attention Mechanism
3. Method
3.1. Data Preprocessing
3.2. Multi-Frequency Mode Signal Fusion Mechanism
3.2.1. Multi-Frequency Mode Signal Decompose Module
Algorithm 1: Multi-frequency mode signal decompose module |
3.2.2. Multi-Frequency Mode Signal Compose Module
3.3. Over-Sampling Training Scheme
4. Experiments and Results
4.1. Datasets and Experimental Settings
4.1.1. Datasets
4.1.2. Evaluation Metrics
4.2. Analysis of the Number of Parameters and FLOPs
4.3. Intra-Dataset Testing
4.3.1. HR Estimation on UBFC-rPPG
4.3.2. HRV Estimation on UBFC-rPPG
4.4. Crossdataset Testing
4.5. Ablation Study
4.5.1. Effectiveness of MFF Mechanism
4.5.2. Effectiveness of the Modified YUV
4.5.3. Effectiveness of Over-Sampling Training Strategy (OSS)
4.5.4. Effectiveness of the SSA-Module
4.5.5. Effectiveness of the TMSC-Module
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Macwan, R.; Benezeth, Y.; Mansouri, A. Heart rate estimation using remote photoplethysmography with multi-objective optimization. Biomed. Signal Process. Control 2019, 49, 24–33. [Google Scholar] [CrossRef]
- Boda, S.; Mahadevappa, M.; Dutta, P.K. A hybrid method for removal of power line interference and baseline wander in ECG signals using EMD and EWT. Biomed. Signal Process. Control 2021, 67, 102466. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, C.; Chen, H.; Zhang, Y.; Yang, X. Remote measurement of heart rate from facial video in different scenarios. Measurement 2022, 188, 110243. [Google Scholar] [CrossRef]
- McDuff, D. Camera measurement of physiological vital signs. ACM Comput. Surv. 2023, 55, 1–40. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Yoo, S. Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans. Biomed. Eng. 2006, 53, 566–568. [Google Scholar] [CrossRef]
- Yin, R.N.; Jia, R.S.; Cui, Z.; Yu, J.T.; Du, Y.B.; Gao, L.; Sun, H.M. Heart rate estimation based on face video under unstable illumination. Appl. Intell. 2021, 51, 5388–5404. [Google Scholar] [CrossRef]
- Das, M.; Choudhary, T.; Bhuyan, M.K.; Sharma, L.N. Non-contact heart rate measurement from facial video data using a 2D-VMD scheme. IEEE Sensors J. 2022, 22, 11153–11161. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, X.; Ivan Wu, Y. Remote heart rate estimation in intense interference scenarios: A white-box framework. IEEE Trans. Instrum. Meas. 2024, 73, 1–14. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Robust heart rate from fitness videos. Physiol. Meas. 2017, 38, 1023–1044. [Google Scholar] [CrossRef] [PubMed]
- de Haan, G.; Jeanne, V. Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef] [PubMed]
- Irani, R.; Nasrollahi, K.; Moeslund, T.B. Improved pulse detection from head motions using DCT. In Proceedings of the 2014 International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, 5–8 January 2014; Volume 3, pp. 118–124. [Google Scholar]
- Niu, X.; Shan, S.; Han, H.; Chen, X. RhythmNet: End-to-end heart rate estimation from face via spatial-temporal representation. IEEE Trans. Image Process. 2020, 29, 2409–2423. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, X.; Zhao, G. Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. In Proceedings of the Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4264–4271. [Google Scholar]
- Yu, Z.; Peng, W.; Li, X.; Hong, X.; Zhao, G. Remote heart rate measurement from highly compressed facial videos: An end-to-end deep learning solution with video enhancement. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 151–160. [Google Scholar]
- Yu, Z.; Li, X.; Niu, X.; Shi, J.; Zhao, G. AutoHR: A strong end-to-end baseline for remote heart rate measurement with neural searching. IEEE Signal Process. Lett. 2020, 27, 1245–1249. [Google Scholar] [CrossRef]
- Niu, X.; Yu, Z.; Han, H.; Li, X.; Shan, S.; Zhao, G. Video-based remote physiological measurement via cross-verified feature disentangling. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part II. Springer: Berlin/Heidelberg, Germany, 2020; pp. 295–310. [Google Scholar]
- Lu, H.; Han, H.; Zhou, S.K. Dual-GAN: Joint BVP and noise modeling for remote physiological measurement. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12399–12408. [Google Scholar]
- Yang, Z.; Wang, H.; Lu, F. Assessment of Deep Learning-Based Heart Rate Estimation Using Remote Photoplethysmography Under Different Illuminations. IEEE Trans. Hum.-Mach. Syst. 2022, 52, 1236–1246. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Bobbia, S.; Macwan, R.; Benezeth, Y.; Mansouri, A.; Dubois, J. Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognition Letters. 2019, 124, 82–90. [Google Scholar] [CrossRef]
- Niu, X.; Han, H.; Shan, S.; Chen, X. VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video. In Proceedings of the Computer Vision—ACCV 2018; Jawahar, C., Li, H., Mori, G., Schindler, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 562–576. [Google Scholar]
- Tulyakov, S.; Alameda-Pineda, X.; Ricci, E.; Yin, L.; Cohn, J.F.; Sebe, N. Self-Adaptive Matrix Completion for Heart Rate Estimation from Face Videos under Realistic Conditions. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2396–2404. [Google Scholar]
- Tang, C.; Lu, J.; Liu, J. Non-contact heart rate monitoring by combining convolutional neural network skin detection and remote photoplethysmography via a low-cost camera. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1390–1396. [Google Scholar]
- Liu, X.; Fromm, J.; Patel, S.; McDuff, D. Multi-task temporal shift attention networks for on-device contactless vitals measurement. In Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020. [Google Scholar]
- Liu, X.; Hill, B.; Jiang, Z.; Patel, S.; McDuff, D. EfficientPhys: Enabling simple, fast and accurate camera-based cardiac measurement. In Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 4997–5006. [Google Scholar]
- Verkruysse, W.; Svaasand, L.; Nelson, J. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, J.; Zhao, G.; Pietikäinen, M. Remote Heart Rate Measurement from Face Videos under Realistic Situations. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 4264–4271. [Google Scholar]
- Song, R.; Chen, H.; Cheng, J.; Li, C.; Liu, Y.; Chen, X. PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography. IEEE J. Biomed. Health Inform. 2021, 25, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Han, H.; Shan, S.; Chen, X. SynRhythm: Learning a deep heart rate estimator from general to specific. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 3580–3585. [Google Scholar]
- Lokendra, B.; Puneet, G. AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation. Comput. Biol. Med. 2022, 141, 105146–105156. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.F.; Wu, B.J.; Cheng, S.E.; Sun, Y.; Chung, M.L. Motion-robust atrial fibrillation detection based on remote-photoplethysmography. IEEE J. Biomed. Health Inform. 2023, 27, 2705–2716. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.W.; Wu, B.F.; Yu, S. A real-time contact-free atrial fibrillation detection system for mobile devices. IEEE J. Biomed. Health Inform. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Alikhani, I.; Shi, J.; Seppanen, T.; Junttila, J.; Majamaa-Voltti, K.; Tulppo, M.; Zhao, G. The OBF database: A large face video database for remote physiological signal measurement and atrial fibrillation detection. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 242–249. [Google Scholar]
Method | Params (MB) | FLOPs |
---|---|---|
PhysNet [14] | ||
TSCAN [29] | ||
EfficientPhys [30] | ||
CVD [17] | ||
DualGAN [18] | ||
MFF-Net (Ours) |
Method | MAE↓ | RMSE↓ | r↑ |
---|---|---|---|
CHROM [11] | |||
POS [5] | |||
Green [31] | |||
Li2014 [32] | |||
PhysNet [14] | |||
TSCAN [29] | |||
EfficientPhys [30] | |||
PulseGAN [33] | |||
SynRhythm [34] | |||
And-rPPG [35] | |||
Dual-GAN [18] | |||
MFF-Net (ours) | 0.75 | 1.12 | 0.99 |
Method | LF-(u.n) | HF-(u.n) | LF/HF | ||||||
---|---|---|---|---|---|---|---|---|---|
Std↓ | RMSE↓ | r↑ | Std↓ | RMSE↓ | r↑ | Std↓ | RMSE↓ | r↑ | |
POS [5] | |||||||||
CHROM [11] | |||||||||
Green [31] | |||||||||
CVD [17] | |||||||||
Dual-GAN [18] | 0.034 | 0.035 | 0.891 | 0.034 | 0.035 | 0.891 | 0.131 | 0.136 | 0.881 |
MFF-Net (30 s) | |||||||||
MFF-Net (15 s) |
Method | Std↓ | RMSE↓ | r↑ |
---|---|---|---|
Li2014 [32] | |||
CHROM [11] | |||
SAMC [27] | |||
RhythmNet [13] | |||
CVD [17] | 6.06 | 6.04 | 0.84 |
MFF-Net (30 s) | 5.60 | 5.75 | 0.90 |
MFF-Net (15 s) |
Method | MAE↓ | RMSE↓ | r↑ |
---|---|---|---|
Without MFF | |||
Without modified YUV | |||
Without OSS | |||
Without SSA | |||
Without TMSC | |||
MFF-Net | 0.75 | 1.12 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Zhuang, J.; Chen, Y.; Zhang, Y.; Zheng, X. MFF-Net: A Lightweight Multi-Frequency Network for Measuring Heart Rhythm from Facial Videos. Sensors 2024, 24, 7937. https://doi.org/10.3390/s24247937
Yan W, Zhuang J, Chen Y, Zhang Y, Zheng X. MFF-Net: A Lightweight Multi-Frequency Network for Measuring Heart Rhythm from Facial Videos. Sensors. 2024; 24(24):7937. https://doi.org/10.3390/s24247937
Chicago/Turabian StyleYan, Wenqin, Jialiang Zhuang, Yuheng Chen, Yun Zhang, and Xiujuan Zheng. 2024. "MFF-Net: A Lightweight Multi-Frequency Network for Measuring Heart Rhythm from Facial Videos" Sensors 24, no. 24: 7937. https://doi.org/10.3390/s24247937
APA StyleYan, W., Zhuang, J., Chen, Y., Zhang, Y., & Zheng, X. (2024). MFF-Net: A Lightweight Multi-Frequency Network for Measuring Heart Rhythm from Facial Videos. Sensors, 24(24), 7937. https://doi.org/10.3390/s24247937