New Challenges in Bladder Cancer Diagnosis: How Biosensing Tools Can Lead to Population Screening Opportunities
Abstract
:1. Introduction
2. Challenges
2.1. Diagnostic Tools for Bladder Cancer Alternative to Cystoscopy
2.2. How Biosensing Tools Can Change Bladder Cancer Diagnosis
2.3. Artificial Intelligence Role in the Bladder Cancer Diagnosis
2.4. Social, Economic and Educational Aspects in Bladder Cancer Management
2.5. Future Perspective Ultraconserved Regions in Human Genome as Highly Sensitive Biomarkers for Early Diagnosis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Rumgay, H.; Li, M.; Yu, H.; Pan, H.; Ni, J. The Global Landscape of Bladder Cancer Incidence and Mortality in 2020 and Projections to 2040. J. Glob. Health 2023, 13, 04109. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Fung, F.D.H.; Leung, C.; Cheung, W.W.L.; Goggins, W.B.; Ng, C.F. The Global Epidemiology of Bladder Cancer: A Joinpoint Regression Analysis of Its Incidence and Mortality Trends and Projection. Sci. Rep. 2018, 8, 1129. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today (Version 1.1); International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.who.int/today (accessed on 15 November 2024).
- Shadab, R.; Nerli, R.B.; Bidi, S.R.; Ghagane, S.C. Risk Factors for Bladder Cancer: Results of a Survey of Hospital Patients. J. Cancer Allied Spec. 2023, 9, 485. [Google Scholar] [CrossRef]
- Sun, L.; Charlton, M.E.; Adamo, M.P.; Deorah, S. Bladder Cancer Collaborative Stage Variables and Their Data Quality, Usage, and Clinical Implications: A Review of SEER Data, 2004–2010. Cancer 2014, 120 (Suppl. S23), 3815–3825. [Google Scholar] [CrossRef]
- Dobruch, J.; Oszczudłowski, M. Bladder Cancer: Current Challenges and Future Directions. Medicina 2021, 57, 749. [Google Scholar] [CrossRef]
- Zlotta, A.R.; Roumeguere, T.; Kuk, C.; Alkhateeb, S.; Rorive, S.; Lemy, A.; van der Kwast, T.H.; Fleshner, N.E.; Jewett, M.A.S.; Finelli, A.; et al. Select Screening in a Specific High-Risk Population of Patients Suggests a Stage Migration toward Detection of Non-Muscle-Invasive Bladder Cancer. Eur. Urol. 2011, 59, 1026–1031. [Google Scholar] [CrossRef]
- Davis, N.; Mor, Y.; Idelevich, P.; Terkieltaub, D.; Ziv, V.; Elkeles, A.; Lew, S.; Okon, E.; Laufer, M.; Ramon, J.; et al. A Novel Urine Cytology Stain for the Detection and Monitoring of Bladder Cancer. J. Urol. 2014, 192, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.W.; Koo, K.C.; Chung, B.H.; Baek, S.Y.; Lee, S.J.; Park, K.H.; Lee, K.S. Deep Learning Diagnostics for Bladder Tumor Identification and Grade Prediction Using RGB Method. Sci. Rep. 2022, 12, 17699. [Google Scholar] [CrossRef]
- Sciarra, A.; Di Lascio, G.; Del Giudice, F.; Leoncini, P.P.; Salciccia, S.; Gentilucci, A.; Porreca, A.; Chung, B.I.; Di Pierro, G.; Busetto, G.M.; et al. Comparison of the Clinical Usefulness of Different Urinary Tests for the Initial Detection of Bladder Cancer: A Systematic Review. Curr. Urol. 2021, 15, 22–32. [Google Scholar] [CrossRef]
- Anastasi, E.; Maggi, M.; Tartaglione, S.; Angeloni, A.; Gennarini, G.; Leoncini, P.P.; Sperduti, I.; Di Lascio, G.; De Stefano, V.; Di Pierro, G.B.; et al. Predictive Value of MCM5 (ADXBLADDER) Analysis in Urine of Men Evaluated for the Initial Diagnosis of Bladder Cancer: A Comparative Prospective Study. Diagn. Cytopathol. 2020, 48, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Danakas, A.; Sweeney, M.; Cheris, S.; Agrawal, T. Urinary Tract Cytology: A Cytologic-Histopathologic Correlation with the Paris System, an Institutional Study. J. Am. Soc. Cytopathol. 2021, 10, 56–63. [Google Scholar] [CrossRef]
- Palou, J.; Brausi, M.; Catto, J.W.F. Management of Patients with Normal Cystoscopy but Positive Cytology or Urine Markers. Eur. Urol. Oncol. 2020, 3, 548–554. [Google Scholar] [CrossRef]
- Mantica, G.; Simonato, A.; Du Plessis, D.E.; Maffezzini, M.; De Rose, A.F.; van der Merwe, A.; Terrone, C. The Pathologist’s Role in the Detection of Rare Variants of Bladder Cancer and Analysis of the Impact on Incidence and Type Detection. Minerva Urol. Nefrol. Ital. J. Urol. Nephrol. 2018, 70, 594–597. [Google Scholar] [CrossRef]
- Frantzi, M.; Latosinska, A.; Flühe, L.; Hupe, M.C.; Critselis, E.; Kramer, M.W.; Merseburger, A.S.; Mischak, H.; Vlahou, A. Developing Proteomic Biomarkers for Bladder Cancer: Towards Clinical Application. Nat. Rev. Urol. 2015, 12, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.M.; Karam, J.A.; Grossman, H.B.; Kader, A.K.; Munsell, M.; Dinney, C.P. Prospective Trial to Identify Optimal Bladder Cancer Surveillance Protocol: Reducing Costs While Maximizing Sensitivity. BJU Int. 2011, 108, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Mantica, G.; Tappero, S.; Parodi, S.; Piol, N.; Spina, B.; Malinaric, R.; Balzarini, F.; Borghesi, M.; Van Der Merwe, A.; Suardi, N.; et al. Bladder Cancer Histological Variants: Which Parameters Could Predict the Concordance between Transurethral Resection of Bladder Tumor and Radical Cystectomy Specimens? Cent. Eur. J. Urol. 2021, 74, 355–361. [Google Scholar] [CrossRef]
- Meeks, J.J.; Al-Ahmadie, H.; Faltas, B.M.; Taylor, J.A.; Flaig, T.W.; DeGraff, D.J.; Christensen, E.; Woolbright, B.L.; McConkey, D.J.; Dyrskjøt, L. Genomic Heterogeneity in Bladder Cancer: Challenges and Possible Solutions to Improve Outcomes. Nat. Rev. Urol. 2020, 17, 259–270. [Google Scholar] [CrossRef]
- Ng, K.; Stenzl, A.; Sharma, A.; Vasdev, N. Urinary Biomarkers in Bladder Cancer: A Review of the Current Landscape and Future Directions. Urol. Oncol. 2021, 39, 41–51. [Google Scholar] [CrossRef]
- D’Costa, J.J.; Goldsmith, J.C.; Wilson, J.S.; Bryan, R.T.; Ward, D.G. A Systematic Review of the Diagnostic and Prognostic Value of Urinary Protein Biomarkers in Urothelial Bladder Cancer. Bladder Cancer 2016, 2, 301–317. [Google Scholar] [CrossRef]
- Moon, C.; Gordon, M.; Moon, D.; Reynolds, T. Microsatellite Instability Analysis (MSA) for Bladder Cancer: Past History and Future Directions. Int. J. Mol. Sci. 2021, 22, 12864. [Google Scholar] [CrossRef] [PubMed]
- Oeyen, E.; Hoekx, L.; De Wachter, S.; Baldewijns, M.; Ameye, F.; Mertens, I. Bladder Cancer Diagnosis and Follow-Up: The Current Status and Possible Role of Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 821. [Google Scholar] [CrossRef] [PubMed]
- Caño Velasco, J.; Polanco Pujol, L.; Moreno Cortés, J.C.; Lafuente Puentedura, A.; Hernández Fernández, C. Bladder Epicheck® for Surveillance in High-Risk Non-Muscle-Invasive Bladder Cancer: Initial Experience and Follow-up Proposal. Actas Urol. Esp. 2023, 47, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Ecke, T.H.; Meisl, C.J.; Schlomm, T.; Rabien, A.; Labonté, F.; Rong, D.; Hofbauer, S.; Friedersdorff, F.; Sommerfeldt, L.; Gagel, N.; et al. BTA Stat®, NMP22® BladderChek®, UBC® Rapid Test, and CancerCheck® UBC® Rapid VISUAL as Urinary Marker for Bladder Cancer: Final Results of a German Multicenter Study. Urol. Oncol. 2023, 41, 484.e17–484.e26. [Google Scholar] [CrossRef]
- Malkowicz, S.B. The Application of Human Complement Factor H-Related Protein (BTA TRAK) in Monitoring Patients with Bladder Cancer. Urol. Clin. N. Am. 2000, 27, 63–73. [Google Scholar] [CrossRef]
- Shefer, H.K.; Masarwe, I.; Bejar, J.; Naamnih, L.H.; Gueta-Milshtein, K.; Shalata, A.; Hadid, Y.; Nativ, O.; Nativ, O. Performance of CellDetect for Detection of Bladder Cancer: Comparison with Urine Cytology and UroVysion. Urol. Oncol. 2023, 41, 296.e1–296.e8. [Google Scholar] [CrossRef]
- Li, K.D.; Chu, C.E.; Patel, M.; Meng, M.V.; Morgan, T.M.; Porten, S.P. Cxbladder Monitor Testing to Reduce Cystoscopy Frequency in Patients with Bladder Cancer. Urol. Oncol. 2023, 41, 326.e1–326.e8. [Google Scholar] [CrossRef]
- Deininger, S.; Todenhöfer, T.; Hennenlotter, J.; Gerber, V.; Schwarz, J.; Bedke, J.; Schwentner, C.; Stenzl, A.; Rausch, S. Impact of Variant Microscopic Interpretation of the uCyt+ Immunocytological Urine Test for the Detection of Bladder Cancer. Diagn. Cytopathol. 2018, 46, 111–116. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rabinowitz, J.; Hilbert, R.; Ghose, A.; Agarwal, S.; Swamy, R.; Bulut, I.; Guttierrez, M.; Buali, E.; Nassar, E.; et al. The Role of URO17® in Diagnosis and Follow up of Bladder Cancer Patients. BMC Urol. 2024, 24, 34. [Google Scholar] [CrossRef]
- Kavcic, N.; Peric, I.; Zagorac, A.; Kokalj Vokac, N. Clinical Evaluation of Two Non-Invasive Genetic Tests for Detection and Monitoring of Urothelial Carcinoma: Validation of UroVysion and Xpert Bladder Cancer Detection Test. Front. Genet. 2022, 13, 839598. [Google Scholar] [CrossRef]
- Passaro, A.; Bakir, M.A.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Witsuba, I.; Swanton, C.; Peters, S. Cancer Biomarkers—Emerging Trends and Clinical Implications for Personalized Treatment. Cell 2024, 187, 1617. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Rocco, B.; Maggi, M.; Lucarelli, G.; Falagario, U.G.; Del Giudice, F.; Crocetto, F.; Barone, B.; La Civita, E.; Lasorsa, F.; et al. Beyond Blood Biomarkers: The Role of SelectMDX in Clinically Significant Prostate Cancer Identification. Expert Rev. Mol. Diagn. 2023, 23, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.; Lee, W.-J.; Kim, S.D.; Park, S.; Kim, J.H. Recent Advances in Biosensor Technologies for Point-of-Care Urinalysis. Biosensors 2022, 12, 1020. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Manasa, G.; Mascarenhas, R.J.; Mondal, K.; Shetti, N.P. Fundamentals of Bio-Electrochemical Sensing. Chem. Eng. J. Adv. 2023, 16, 100516. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef]
- Sequeira-Antunes, B.; Ferreira, H.A. Nucleic Acid Aptamer-Based Biosensors: A Review. Biomedicines 2023, 11, 3201. [Google Scholar] [CrossRef]
- Flynn, C.D.; Chang, D.; Mahmud, A.; Yousefi, H.; Das, J.; Riordan, K.T.; Sargent, E.H.; Kelley, S.O. Biomolecular Sensors for Advanced Physiological Monitoring. Nat. Rev. Bioeng. 2023, 1, 560–575. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Wang, H. Bioreceptors as the Key Components for Electrochemical Biosensing in Medicine. Cell Rep. Phys. Sci. 2024, 5, 101801. [Google Scholar] [CrossRef]
- Ferro, M.; Buonerba, C.; Terracciano, D.; Lucarelli, G.; Cosimato, V.; Bottero, D.; Deliu, V.M.; Ditonno, P.; Perdonà, S.; Autorino, R.; et al. Biomarkers in Localized Prostate Cancer. Future Oncol. 2016, 12, 399–411. [Google Scholar] [CrossRef]
- Ferro, M.; De Cobelli, O.; Lucarelli, G.; Porreca, A.; Busetto, G.M.; Cantiello, F.; Damiano, R.; Autorino, R.; Musi, G.; Vartolomei, M.D.; et al. Beyond PSA: The Role of Prostate Health Index (Phi). Int. J. Mol. Sci. 2020, 21, 1184. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Yan, Y.; Yao, J.; Zhong, F.; Xie, S.; Zhang, M.; Zhang, H.; Jin, M.; Shui, L. A Multi-Unit Integrated Electrochemical Biosensor Array for Synergistic Signal Enhancing Carbohydrate Antigen 125 Detection. Sens. Actuators B Chem. 2023, 393, 134224. [Google Scholar] [CrossRef]
- Rodrigues, A.C.M.; Barbieri, M.V.; Chino, M.; Manco, G.; Febbraio, F. A 3D Printable Adapter for Solid-State Fluorescence Measurements: The Case of an Immobilized Enzymatic Bioreceptor for Organophosphate Pesticides Detection. Anal. Bioanal. Chem. 2022, 414, 1999–2008. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Trinh, K.T.L. Microfluidic Biosensors for Point-of-Care Nucleic Acid Amplification Tests. Biosensors 2022, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Tung, S. Development and Applications of Portable Biosensors. J. Lab. Autom. 2015, 20, 365–389. [Google Scholar] [CrossRef]
- Chan, K.M.; Vasilev, K.; Shirazi, H.S.; McNicholas, K.; Li, J.; Gleadle, J.; MacGregor, M. Biosensor Device for the Photo-Specific Detection of Immuno-Captured Bladder Cancer Cells Using Hexaminolevulinate: An Ex-Vivo Study. Photodiagnosis Photodyn. Ther. 2019, 28, 238–247. [Google Scholar] [CrossRef]
- MacGregor, M.; Safizadeh Shirazi, H.; Chan, K.M.; Ostrikov, K.; McNicholas, K.; Jay, A.; Chong, M.; Staudacher, A.H.; Michl, T.D.; Zhalgasbaikyzy, A.; et al. Cancer Cell Detection Device for the Diagnosis of Bladder Cancer from Urine. Biosens. Bioelectron. 2021, 171, 112699. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Mukherjee, D.; Singh, S.; Ghosh, R.; Karmakar, S.; Mallick, A.; Chattopadhyay, A.; Mondal, P.; Mondal, T.; Bhattacharyya, D.; et al. “Seeing” Invisible Volatile Organic Compound (VOC) Marker of Urinary Bladder Cancer: A Development from Bench to Bedside Prototype Spectroscopic Device. Biosens. Bioelectron. 2022, 218, 114764. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, F.; Zhu, J.; He, Z.; Hao, L.; Weng, L.; Wang, L.; Chao, J. Ultrasensitive Electrochemiluminescence Immunosensor for Bladder Marker Human Complement Factor H-Related Protein Detection. Anal. Chem. 2023, 95, 11440–11448. [Google Scholar] [CrossRef]
- Arya, S.K.; Estrela, P. Electrochemical ELISA-Based Platform for Bladder Cancer Protein Biomarker Detection in Urine. Biosens. Bioelectron. 2018, 117, 620–627. [Google Scholar] [CrossRef]
- Wang, J.; Guo, F.; Zhang, J.; Chao, J. Potential-Resolved Electrochemiluminescence for Simultaneous Determination of Multiplex Bladder Cancer Markers. Chem. Commun. 2024, 60, 4609–4612. [Google Scholar] [CrossRef] [PubMed]
- Sankiewicz, A.; Guszcz, T.; Mena-Hortelano, R.; Zukowski, K.; Gorodkiewicz, E. Podoplanin Serum and Urine Concentration in Transitional Bladder Cancer. Cancer Biomark. Sect. Dis. Markers 2016, 16, 343–350. [Google Scholar] [CrossRef]
- Guszcz, T.; Sankiewicz, A.; Gorodkiewicz, E. Application of Surface Plasmon Resonance Imaging Biosensors for Determination of Fibronectin, Laminin-5 and Type IV Collagen in Serum of Transitional Bladder Cancer Patients. J. Pharm. Biomed. Anal. 2023, 222, 115103. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, N.; Liu, F.; Wang, Y.; Liang, H.; Yang, Y.; Yuan, Q. Flexible Point-of-Care Electrodes for Ultrasensitive Detection of Bladder Tumor-Relevant miRNA in Urine. Anal. Chem. 2023, 95, 1847–1855. [Google Scholar] [CrossRef]
- Huertas, C.S.; Lechuga, L.M. Ultrasensitive Label-Free Nucleic-Acid Biosensors Based on Bimodal Waveguide Interferometers. Methods Mol. Biol. 2022, 2393, 89–125. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, F.; Zhao, Y.; Liu, Z.; Yao, X.; Zhang, J. Tetrahedron Supported CRISPR/Cas13a Cleavage for Electrochemical Detection of Circular RNA in Bladder Cancer. Biosens. Bioelectron. 2023, 222, 114982. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, R.; Gupta, N.P. Comparison of NMP22 BladderChek Test and Urine Cytology for the Detection of Recurrent Bladder Cancer. Jpn. J. Clin. Oncol. 2006, 36, 172–175. [Google Scholar] [CrossRef]
- Cheng, K.; Wan, S.; Chen, S.-Y.; Yang, J.-W.; Wang, H.-L.; Xu, C.-H.; Qiao, S.-H.; Yang, L. Nuclear Matrix Protein 22 in Bladder Cancer. Clin. Chim. Acta Int. J. Clin. Chem. 2024, 560, 119718. [Google Scholar] [CrossRef]
- Grossman, H.B.; Messing, E.; Soloway, M.; Tomera, K.; Katz, G.; Berger, Y.; Shen, Y. Detection of Bladder Cancer Using a Point-of-Care Proteomic Assay. JAMA 2005, 293, 810–816. [Google Scholar] [CrossRef]
- Grossman, H.B.; Soloway, M.; Messing, E.; Katz, G.; Stein, B.; Kassabian, V.; Shen, Y. Surveillance for Recurrent Bladder Cancer Using a Point-of-Care Proteomic Assay. JAMA 2006, 295, 299–305. [Google Scholar] [CrossRef]
- Othman, H.O.; Salehnia, F.; Fakhri, N.; Hassan, R.; Hosseini, M.; Faizullah, A.; Ganjali, M.R.; Kazem Aghamir, S.M. A Highly Sensitive Fluorescent Immunosensor for Sensitive Detection of Nuclear Matrix Protein 22 as Biomarker for Early Stage Diagnosis of Bladder Cancer. RSC Adv. 2020, 10, 28865–28871. [Google Scholar] [CrossRef] [PubMed]
- Stilgoe, J. Machine Learning, Social Learning and the Governance of Self-Driving Cars. Soc. Stud. Sci. 2018, 48, 25–56. [Google Scholar] [CrossRef]
- O’Connor, S. Open Artificial Intelligence Platforms in Nursing Education: Tools for Academic Progress or Abuse? Nurse Educ. Pract. 2023, 66, 103537. [Google Scholar] [CrossRef] [PubMed]
- Borhani, S.; Borhani, R.; Kajdacsy-Balla, A. Artificial Intelligence: A Promising Frontier in Bladder Cancer Diagnosis and Outcome Prediction. Crit. Rev. Oncol. Hematol. 2022, 171, 103601. [Google Scholar] [CrossRef] [PubMed]
- Eun, S.-J.; Kim, J.; Kim, K.H. Applications of Artificial Intelligence in Urological Setting: A Hopeful Path to Improved Care. J. Exerc. Rehabil. 2021, 17, 308–312. [Google Scholar] [CrossRef]
- Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep Learning in Cancer Diagnosis, Prognosis and Treatment Selection. Genome Med. 2021, 13, 152. [Google Scholar] [CrossRef]
- Nojima, S.; Terayama, K.; Shimoura, S.; Hijiki, S.; Nonomura, N.; Morii, E.; Okuno, Y.; Fujita, K. A Deep Learning System to Diagnose the Malignant Potential of Urothelial Carcinoma Cells in Cytology Specimens. Cancer Cytopathol. 2021, 129, 984–995. [Google Scholar] [CrossRef]
- Awan, R.; Benes, K.; Azam, A.; Song, T.-H.; Shaban, M.; Verrill, C.; Tsang, Y.W.; Snead, D.; Minhas, F.; Rajpoot, N. Deep Learning Based Digital Cell Profiles for Risk Stratification of Urine Cytology Images. Cytom. Part A J. Int. Soc. Anal. Cytol. 2021, 99, 732–742. [Google Scholar] [CrossRef]
- Vaickus, L.J.; Suriawinata, A.A.; Wei, J.W.; Liu, X. Automating the Paris System for Urine Cytopathology-A Hybrid Deep-Learning and Morphometric Approach. Cancer Cytopathol. 2019, 127, 98–115. [Google Scholar] [CrossRef]
- Sanghvi, A.B.; Allen, E.Z.; Callenberg, K.M.; Pantanowitz, L. Performance of an Artificial Intelligence Algorithm for Reporting Urine Cytopathology. Cancer Cytopathol. 2019, 127, 658–666. [Google Scholar] [CrossRef]
- Khosravi, P.; Kazemi, E.; Imielinski, M.; Elemento, O.; Hajirasouliha, I. Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine 2018, 27, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, I.; Dokukin, M.E.; Kalaparthi, V.; Miljkovic, M.; Wang, A.; Seigne, J.D.; Grivas, P.; Demidenko, E. Noninvasive Diagnostic Imaging Using Machine-Learning Analysis of Nanoresolution Images of Cell Surfaces: Detection of Bladder Cancer. Proc. Natl. Acad. Sci. USA 2018, 115, 12920–12925. [Google Scholar] [CrossRef] [PubMed]
- Lilli, L.; Giarnieri, E.; Scardapane, S. A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells. Comput. Math. Methods Med. 2021, 2021, 5569458. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.-H.; Chen, C.-L.; Lin, J.-Y.; Chen, C.-J.; Fu, S.-H.; Chen, Y.-T.; Chang, Y.-S.; Yu, J.-S.; Tsui, K.-H.; Juo, C.-G.; et al. Metabolite Marker Discovery for the Detection of Bladder Cancer by Comparative Metabolomics. Oncotarget 2017, 8, 38802–38810. [Google Scholar] [CrossRef] [PubMed]
- Kouznetsova, V.L.; Kim, E.; Romm, E.L.; Zhu, A.; Tsigelny, I.F. Recognition of Early and Late Stages of Bladder Cancer Using Metabolites and Machine Learning. Metabolomics Off. J. Metabolomic Soc. 2019, 15, 94. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Tian, Q.; Zhang, G.; Liu, Y.; Cui, G.; Meng, J.; Wu, Y.; Liu, T.; Yang, Z.; et al. Three-Dimensional Texture Features from Intensity and High-Order Derivative Maps for the Discrimination between Bladder Tumors and Wall Tissues via MRI. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 645–656. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, J.; Li, Y.; Wu, Z.; Shi, S.; Huang, M.; Yu, H.; Dong, W.; Huang, J.; Lin, T. Development and Validation of an MRI-Based Radiomics Signature for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer. EBioMedicine 2018, 34, 76–84. [Google Scholar] [CrossRef]
- Zheng, J.; Kong, J.; Wu, S.; Li, Y.; Cai, J.; Yu, H.; Xie, W.; Qin, H.; Wu, Z.; Huang, J.; et al. Development of a Noninvasive Tool to Preoperatively Evaluate the Muscular Invasiveness of Bladder Cancer Using a Radiomics Approach. Cancer 2019, 125, 4388–4398. [Google Scholar] [CrossRef]
- Kozikowski, M.; Suarez-Ibarrola, R.; Osiecki, R.; Bilski, K.; Gratzke, C.; Shariat, S.F.; Miernik, A.; Dobruch, J. Role of Radiomics in the Prediction of Muscle-Invasive Bladder Cancer: A Systematic Review and Meta-Analysis. Eur. Urol. Focus 2022, 8, 728–738. [Google Scholar] [CrossRef]
- Taguchi, S.; Tambo, M.; Watanabe, M.; Machida, H.; Kariyasu, T.; Fukushima, K.; Shimizu, Y.; Okegawa, T.; Yokoyama, K.; Fukuhara, H. Prospective Validation of Vesical Imaging-Reporting and Data System Using a Next-Generation Magnetic Resonance Imaging Scanner-Is Denoising Deep Learning Reconstruction Useful? J. Urol. 2021, 205, 686–692. [Google Scholar] [CrossRef]
- Sarkar, S.; Min, K.; Ikram, W.; Tatton, R.W.; Riaz, I.B.; Silva, A.C.; Bryce, A.H.; Moore, C.; Ho, T.H.; Sonpavde, G.; et al. Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer Patients Using a Hybrid Deep-Machine Learning Approach. Cancers 2023, 15, 1673. [Google Scholar] [CrossRef] [PubMed]
- Tangcharoensathien, V.; Lekagul, A.; Teo, Y.-Y. Global Health Inequities: More Challenges, Some Solutions. Bull. World Health Organ. 2024, 102, 86. [Google Scholar] [CrossRef] [PubMed]
- Kraft, P.; Kraft, B. Explaining Socioeconomic Disparities in Health Behaviours: A Review of Biopsychological Pathways Involving Stress and Inflammation. Neurosci. Biobehav. Rev. 2021, 127, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Chelak, K.; Chakole, S. The Role of Social Determinants of Health in Promoting Health Equality: A Narrative Review. Cureus 2023, 15, e33425. [Google Scholar] [CrossRef]
- Minhas, A.M.K.; Jain, V.; Li, M.; Ariss, R.W.; Fudim, M.; Michos, E.D.; Virani, S.S.; Sperling, L.; Mehta, A. Family Income and Cardiovascular Disease Risk in American Adults. Sci. Rep. 2023, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, A.W.; Himmelstein, D.U.; Christiani, D.C.; Woolhandler, S. Socioeconomic Inequality in Respiratory Health in the US From 1959 to 2018. JAMA Intern. Med. 2021, 181, 968–976. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, D.; Chen, Y.; Tan, M.; Chen, X. Effect of Socioeconomic Status on the Physical and Mental Health of the Elderly: The Mediating Effect of Social Participation. BMC Public Health 2022, 22, 605. [Google Scholar] [CrossRef]
- Sandström, N.; Johansson, M.; Jekunen, A.; Andersén, H. Socioeconomic Status and Lifestyle Patterns in the Most Common Cancer Types-Community-Based Research. BMC Public Health 2023, 23, 1722. [Google Scholar] [CrossRef]
- Barakat, C.; Konstantinidis, T. A Review of the Relationship between Socioeconomic Status Change and Health. Int. J. Environ. Res. Public. Health 2023, 20, 6249. [Google Scholar] [CrossRef]
- Debiasi, E.; Dribe, M. SES Inequalities in Cause-Specific Adult Mortality: A Study of the Long-Term Trends Using Longitudinal Individual Data for Sweden (1813–2014). Eur. J. Epidemiol. 2020, 35, 1043–1056. [Google Scholar] [CrossRef]
- Wolfson, M.; Chapman, D.; Lee, J.H.; Bijelic, V.; Woolf, S. Extent and Socioeconomic Correlates of Small Area Variations in Life Expectancy in Canada and the United States. Health Rep. 2024, 35, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Jalloh, M.; Cassell, A.; Diallo, T.; Gaye, O.; Ndoye, M.; Mbodji, M.M.; Mahamat, M.A.; Diallo, A.; Dial, C.; Labou, I.; et al. Is Schistosomiasis a Risk Factor for Bladder Cancer? Evidence-Based Facts. J. Trop. Med. 2020, 2020, 8270810. [Google Scholar] [CrossRef] [PubMed]
- Antar, R.M.; Xu, V.E.; Adesanya, O.; Drouaud, A.; Longton, N.; Gordon, O.; Youssef, K.; Kfouri, J.; Azari, S.; Tafuri, S.; et al. Income Disparities in Survival and Receipt of Neoadjuvant Chemotherapy and Pelvic Lymph Node Dissection for Muscle-Invasive Bladder Cancer. Curr. Oncol. 2024, 31, 2566–2581. [Google Scholar] [CrossRef] [PubMed]
- Densmore, R.; Hajizadeh, M.; Hu, M. Trends in Socio-Economic Inequalities in Bladder Cancer Incidence in Canada: 1992–2010. Can. J. Public Health Rev. Can. Santé Publique 2019, 110, 722–731. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, J.; Liu, G.-X.; Zi, H.; Tang, S.-D.; Jia, H.-C.; Li, W.; Xu, X.-F.; Zeng, X.-T. Changes in Disease Burden and Global Inequalities in Bladder, Kidney and Prostate Cancers from 1990 to 2019: A Comparative Analysis Based on the Global Burden of Disease Study 2019. BMC Public Health 2024, 24, 891. [Google Scholar] [CrossRef]
- Zhong, W.; Qu, H.; Yao, B.; Wang, D.; Qiu, J. Analysis of a Long Non-Coding RNA Associated Signature to Predict Survival in Patients with Bladder Cancer. Cureus 2022, 14, e24818. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, H.; Wang, X.; Lu, J.; Yang, W. Long Noncoding RNAs in Bladder Cancer Prognosis: A Meta-Analysis. Pathol. Res. Pract. 2019, 215, 152429. [Google Scholar] [CrossRef]
- Bejerano, G.; Pheasant, M.; Makunin, I.; Stephen, S.; Kent, W.J.; Mattick, J.S.; Haussler, D. Ultraconserved Elements in the Human Genome. Science 2004, 304, 1321–1325. [Google Scholar] [CrossRef]
- Gibert, M.K.; Sarkar, A.; Chagari, B.; Roig-Laboy, C.; Saha, S.; Bednarek, S.; Kefas, B.; Hanif, F.; Hudson, K.; Dube, C.; et al. Transcribed Ultraconserved Regions in Cancer. Cells 2022, 11, 1684. [Google Scholar] [CrossRef]
- Olivieri, M.; Ferro, M.; Terreri, S.; Durso, M.; Romanelli, A.; Avitabile, C.; De Cobelli, O.; Messere, A.; Bruzzese, D.; Vannini, I.; et al. Long Non-Coding RNA Containing Ultraconserved Genomic Region 8 Promotes Bladder Cancer Tumorigenesis. Oncotarget 2016, 7, 20636–20654. [Google Scholar] [CrossRef]
- Calin, G.A.; Liu, C.; Ferracin, M.; Hyslop, T.; Spizzo, R.; Sevignani, C.; Fabbri, M.; Cimmino, A.; Lee, E.J.; Wojcik, S.E.; et al. Ultraconserved Regions Encoding ncRNAs Are Altered in Human Leukemias and Carcinomas. Cancer Cell 2007, 12, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of Bladder Cancer. Med. Sci. 2020, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Terreri, S.; Durso, M.; Colonna, V.; Romanelli, A.; Terracciano, D.; Ferro, M.; Perdonà, S.; Castaldo, L.; Febbraio, F.; de Nigris, F.; et al. New Cross-Talk Layer between Ultraconserved Non-Coding RNAs, MicroRNAs and Polycomb Protein YY1 in Bladder Cancer. Genes 2016, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Ciaramella, A.; Di Nardo, E.; Terracciano, D.; Conte, L.; Febbraio, F.; Cimmino, A. A New Biomarker Panel of Ultraconserved Long Non-Coding RNAs for Bladder Cancer Prognosis by a Machine Learning Based Methodology. BMC Bioinform. 2023, 23, 569. [Google Scholar] [CrossRef]
- Terreri, S.; Mancinelli, S.; Ferro, M.; Vitale, M.C.; Perdonà, S.; Castaldo, L.; Gigantino, V.; Mercadante, V.; De Cecio, R.; Aquino, G.; et al. Subcellular Localization of Uc.8+ as a Prognostic Biomarker in Bladder Cancer Tissue. Cancers 2021, 13, 681. [Google Scholar] [CrossRef]
Test | Sensitivity | Specificity | Reference |
---|---|---|---|
Microsatellite analysis | 72–97% | 80–100% | [22] |
Analysis EV | 81% | 90% | [23] |
EpiCheck | 94.3% | 79.6% | [24] |
BTA STAT | 57–82% | 68–93% | [25] |
BTA TRAK | 66–77% | 5–75% | [26] |
CellDetect | 94% | 89% | [27] |
CxBladder | 82% | 90% | [28] |
ImmunoCyt (uCyt+) | 60–100% | 75–84% | [29] |
NMP22 BladderChek (ELISA) | 69% | 77% | [25] |
NMP22 BladderChek (POC) | 58% | 88% | [25] |
UBC | 64.4% | 80.3% | [25] |
URO17 | 100% | 96% | [30] |
UroVysion | 69–87% | 89–96% | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortora, F.; Guastaferro, A.; Barbato, S.; Febbraio, F.; Cimmino, A. New Challenges in Bladder Cancer Diagnosis: How Biosensing Tools Can Lead to Population Screening Opportunities. Sensors 2024, 24, 7873. https://doi.org/10.3390/s24247873
Tortora F, Guastaferro A, Barbato S, Febbraio F, Cimmino A. New Challenges in Bladder Cancer Diagnosis: How Biosensing Tools Can Lead to Population Screening Opportunities. Sensors. 2024; 24(24):7873. https://doi.org/10.3390/s24247873
Chicago/Turabian StyleTortora, Fabiana, Antonella Guastaferro, Simona Barbato, Ferdinando Febbraio, and Amelia Cimmino. 2024. "New Challenges in Bladder Cancer Diagnosis: How Biosensing Tools Can Lead to Population Screening Opportunities" Sensors 24, no. 24: 7873. https://doi.org/10.3390/s24247873
APA StyleTortora, F., Guastaferro, A., Barbato, S., Febbraio, F., & Cimmino, A. (2024). New Challenges in Bladder Cancer Diagnosis: How Biosensing Tools Can Lead to Population Screening Opportunities. Sensors, 24(24), 7873. https://doi.org/10.3390/s24247873