A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Experiment
2.3. IRT Calibration
2.4. Stem Water Potential
2.5. Leaf Gas Exchange
2.6. Data Processing
2.7. NWSB Development
2.8. CWSI Calculation
3. Results
3.1. Weather Conditions
3.2. LOCOS Calibration
3.3. Crop Water Stress Responses
4. Discussion
4.1. Validation of Low-Cost IRT Sensors for Canopy Temperature Monitoring
4.2. Challenges in IRT Applications
4.3. Establishing the First CWSI for Jefferson Hazelnuts
4.4. Implications of Sensor Technologies and Climate Change for Hazelnut Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sott, M.K.; Nascimento, L.D.S.; Foguesatto, C.R.; Furstenau, L.B.; Faccin, K.; Zawislak, P.A.; Mellado, B.; Kong, J.D.; Bragazzi, N.L. A Bibliometric Network Analysis of Recent Publications on Digital Agriculture to Depict Strategic Themes and Evolution Structure. Sensors 2021, 21, 7889. [Google Scholar] [CrossRef] [PubMed]
- AL-agele, H.A.; Nackley, L.; Higgins, C.W. A Pathway for Sustainable Agriculture. Sustainability 2021, 13, 4328. [Google Scholar] [CrossRef]
- Barrile, V.; Simonetti, S.; Citroni, R.; Fotia, A.; Bilotta, G. Experimenting Agriculture 4.0 with Sensors: A Data Fusion Approach between Remote Sensing, UAVs and Self-Driving Tractors. Sensors 2022, 22, 7910. [Google Scholar] [CrossRef] [PubMed]
- Warneke, B.W.; Zhu, H.; Pscheidt, J.W.; Nackley, L.L. Canopy Spray Application Technology in Specialty Crops: A Slowly Evolving Landscape. Pest. Manag. Sci. 2021, 77, 2157–2164. [Google Scholar] [CrossRef]
- Sánchez Millán, F.; Ortiz, F.J.; Mestre Ortuño, T.C.; Frutos, A.; Martínez, V. Development of Smart Irrigation Equipment for Soilless Crops Based on the Current Most Representative Water-Demand Sensors. Sensors 2023, 23, 3177. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Ortega-Farías, S.; Acevedo-Opazo, C.; Rivera, M.; Araya-Alman, M. A Smart Crop Water Stress Index-Based IoT Solution for Precision Irrigation of Wine Grape. Sensors 2023, 24, 25. [Google Scholar] [CrossRef]
- AL-agele, H.A.; Mahapatra, D.M.; Nackley, L.; Higgins, C. Economic Viability of Ultrasonic Sensor Actuated Nozzle Height Control in Center Pivot Irrigation Systems. Agronomy 2022, 12, 1077. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R.L. ASCE Standardized Reference Evapotranspiration Equation; American Society of Civil Engineers: Reston, VA, USA, 2018; ISBN 978-0-7844-7563-8. [Google Scholar]
- Jensen, M.E.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; ASCE: Reston, VA, USA, 2016; p. 744. [Google Scholar]
- Cardenas-Lailhacar, B.; Dukes, M.D. Precision of Soil Moisture Sensor Irrigation Controllers under Field Conditions. Agric. Water Manag. 2010, 97, 666–672. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Casanova, J.J.; Heng, L.K. Soil Water Sensing for Water Balance, ET and WUE. Agric. Water Manag. 2012, 104, 1–9. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Jones, S.; Meding, M.; Tuller, M. Evaluation of Standard Calibration Functions for Eight Electromagnetic Soil Moisture Sensors. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Levin, A.; Nackley, L. Principles and Practices of Plant-Based Irrigation Management. HortTechnology 2021, 31, 650–660. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for Crop Water Stress with Infrared Thermal Imagery in Precision Agriculture: A Review and Future Prospects for Deep Learning Applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Woodgate, W.; Van Gorsel, E.; Hughes, D.; Suarez, L.; Jimenez-Berni, J.; Held, A. THEMS: An Automated Thermal and Hyperspectral Proximal Sensing System for Canopy Reflectance, Radiance and Temperature. Plant Methods 2020, 16, 105. [Google Scholar] [CrossRef] [PubMed]
- Kacira, M.; Ling, P.P.; Short, T.H. Establishing Crop Water Stress Index (CWSI) Threshold Values for Early, Non-Contact Detection of Plant Water Stress. Trans. Am. Soc. Agric. Eng. 2002, 45, 775–780. [Google Scholar] [CrossRef]
- Osroosh, Y.; Troy Peters, R.; Campbell, C.S.; Zhang, Q. Automatic Irrigation Scheduling of Apple Trees Using Theoretical Crop Water Stress Index with an Innovative Dynamic Threshold. Comput. Electron. Agric. 2015, 118, 193–203. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the Stress-Degree-Day Parameter for Environmental Variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Jackson, R.D.; Kustas, W.P.; Choudhury, B.J. A Reexamination of the Crop Water Stress Index. Irrig. Sci. 1988, 9, 309–317. [Google Scholar] [CrossRef]
- Paltineanu, C.; Septar, L.; Moale, C. Moale Crop Water Stress in Peach Orchards and Relationships with Soil Moisture Content in a Chernozem of Dobrogea. J. Irrig. Drain. Eng. 2013, 139, 20–25. [Google Scholar] [CrossRef]
- Poirier-Pocovi, M.; Volder, A.; Bailey, B.N. Modeling of Reference Temperatures for Calculating Crop Water Stress Indices from Infrared Thermography. Agric. Water Manag. 2020, 233, 106070. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; González-Teruel, J.D.; Soto-Valles, F.; Jiménez-Buendía, M.; Navarro-Hellín, H.; Torres-Sánchez, R. Intelligent Thermal Image-Based Sensor for Affordable Measurement of Crop Canopy Temperature. Comput. Electron. Agric. 2021, 188, 106319. [Google Scholar] [CrossRef]
- King, B.A.; Shellie, K.C. A Crop Water Stress Index Based Internet of Things Decision Support System for Precision Irrigation of Wine Grape. Smart Agric. Technol. 2023, 4, 100202. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Agam, N.; Alchanatis, V.; Cohen, Y.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Sprintsin, M.; Dag, A. Evaluating Water Stress in Irrigated Olives: Correlation of Soil Water Status, Tree Water Status, and Thermal Imagery. Irrig. Sci. 2009, 27, 367–376. [Google Scholar] [CrossRef]
- Noguera, M.; Millán, B.; Pérez-Paredes, J.J.; Ponce, J.M.; Aquino, A.; Andújar, J.M. A New Low-Cost Device Based on Thermal Infrared Sensors for Olive Tree Canopy Temperature Measurement and Water Status Monitoring. Remote Sens. 2020, 12, 723. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Applicability and Limitations of Using the Crop Water Stress Index as an Indicator of Water Deficits in Citrus Orchards. Agric. For. Meteorol. 2014, 198, 94–104. [Google Scholar] [CrossRef]
- McCauley, D.M.; Nackley, L.L.; Kelley, J. Demonstration of a Low-Cost and Open-Source Platform for on-Farm Monitoring and Decision Support. Comput. Electron. Agric. 2021, 187, 106284. [Google Scholar] [CrossRef]
- Blum, A.G.; Miller, A. Opportunities for Forecast-Informed Water Resources Management in the United States. Bull. Am. Meteorol. Soc. 2019, 100, 2087–2090. [Google Scholar] [CrossRef]
- Uccellini, L.W.; Ten Hoeve, J.E. Evolving the National Weather Service to Build a Weather-Ready Nation: Connecting Observations, Forecasts, and Warnings to Decision-Makers through Impact-Based Decision Support Services. Bull. Am. Meteorol. Soc. 2019, 100, 1923–1942. [Google Scholar] [CrossRef]
- Mase, A.S.; Prokopy, L.S. Unrealized Potential: A Review of Perceptions and Use of Weather and Climate Information in Agricultural Decision Making. Weather Clim. Soc. 2014, 6, 47–61. [Google Scholar] [CrossRef]
- Kelley, J.; Pardyjak, E. Using Neural Networks to Estimate Site-Specific Crop Evapotranspiration with Low-Cost Sensors. Agronomy 2019, 9, 108. [Google Scholar] [CrossRef]
- Prokopy, L.S.; Carlton, J.S.; Haigh, T.; Lemos, M.C.; Mase, A.S.; Widhalm, M. Useful to Usable: Developing Usable Climate Science for Agriculture. Clim. Risk Manag. 2017, 15, 1–7. [Google Scholar] [CrossRef]
- Renehan, A.; Rombach, B.; Haikl, A.; Nolan, C.; Lupton, W.; Timmons, E.; Bailey, R. Low Power Wireless Networks in Vineyards. In Proceedings of the 2020 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 24 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review. Wirel. Pers. Commun. 2019, 107, 471–512. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, R.G. Software Design for Wireless Sensor-Based Site-Specific Irrigation. Comput. Electron. Agric. 2009, 66, 159–165. [Google Scholar] [CrossRef]
- Kelley, J.; McCauley, D.; Alexander, G.A.; Gray, W.F.; Siegfried, R.; Oldroyd, H.J. Using Machine Learning to Integrate On-Farm Sensors and Agro-Meteorology Networks into Site-Specific Decision Support. Trans. ASABE 2020, 63, 1427–1439. [Google Scholar] [CrossRef]
- Leroux, C.; Jones, H.; Clenet, A.; Dreux, B.; Becu, M.; Tisseyre, B. A General Method to Filter out Defective Spatial Observations from Yield Mapping Datasets. Precis. Agric. 2018, 19, 789–808. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting Sustainable Intensification in Precision Agriculture: Review of Decision Support Systems Development and Strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- Gunawardena, N.; Pardyjak, E.R.; Stoll, R.; Khadka, A. Development and Evaluation of an Open-Source, Low-Cost Distributed Sensor Network for Environmental Monitoring Applications. Meas. Sci. Technol. 2018, 29, 024008. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; González-Teruel, J.D.; Blaya-Ros, P.J.; Toledo-Moreo, A.B.; Domingo-Miguel, R.; Torres-Sánchez, R. Automatic Crop Canopy Temperature Measurement Using a Low-Cost Image-Based Thermal Sensor: Application in a Pomegranate Orchard under a Permanent Shade Net House. Sensors 2023, 23, 2915. [Google Scholar] [CrossRef]
- Silvestri, C.; Bacchetta, L.; Bellincontro, A.; Cristofori, V. Advances in Cultivar Choice, Hazelnut Orchard Management, and Nut Storage to Enhance Product Quality and Safety: An Overview. J. Sci. Food Agric. 2021, 101, 27–43. [Google Scholar] [CrossRef]
- Altieri, G.; Wiman, N.G.; Santoro, F.; Amato, M.; Celano, G. Assessment of Leaf Water Potential and Stomatal Conductance as Early Signs of Stress in Young Hazelnut Tree in Willamette Valley. Sci. Hortic. 2024, 327, 112817. [Google Scholar] [CrossRef]
- Girona, J.; Cohen, M.; Mata, M.; Marsal, J.; Miravete, C. Physiological, Growth And Yield Responses Of Hazelnut (Corylus avellana L.) To Different Irrigation Regimes. Acta Hortic. 1994, 351, 463–472. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Testi, L.; Villalobos, F.J.; López-Bernal, A.; Orgaz, F.; Zarco-Tejada, P.J.; Fereres, E. Empirical Validation of the Relationship between the Crop Water Stress Index and Relative Transpiration in Almond Trees. Agric. For. Meteorol. 2020, 292, 108128. [Google Scholar] [CrossRef]
- Lipan, L.; Martín-Palomo, M.J.; Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Sendra, E.; Hernández, F.; Burló, F.; Vázquez-Araújo, L.; Andreu, L.; Carbonell-Barrachina, Á.A. Almond Fruit Quality Can Be Improved by Means of Deficit Irrigation Strategies. Agric. Water Manag. 2019, 217, 236–242. [Google Scholar] [CrossRef]
- Moldero, D.; López-Bernal, Á.; Testi, L.; Lorite, I.J.; Fereres, E.; Orgaz, F. Long-Term Almond Yield Response to Deficit Irrigation. Irrig. Sci. 2021, 39, 409–420. [Google Scholar] [CrossRef]
- King, B.A.; Shellie, K.C.; Tarkalson, D.D.; Levin, A.D.; Sharma, V.; Bjorneberg, D.L. Data-Driven Models for Canopy Temperature-Based Irrigation Scheduling. Trans. ASABE 2020, 63, 1579–1592. [Google Scholar] [CrossRef]
- Monje, O.; Bugbee, B. Radiometric Method for Determining Canopy Stomatal Conductance in Controlled Environments. Agronomy 2019, 9, 114. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Kitta, E.; Katsoulas, N. Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements. Agronomy 2020, 10, 1985. [Google Scholar] [CrossRef]
- Mehlenbacher, S.A.; Smith, D.C.; McCluskey, R.L. ‘Jefferson’ Hazelnut. HortScience 2011, 46, 662–664. [Google Scholar] [CrossRef]
- Aubrecht, D.M.; Helliker, B.R.; Goulden, M.L.; Roberts, D.A.; Still, C.J.; Richardson, A.D. Continuous, Long-Term, High-Frequency Thermal Imaging of Vegetation: Uncertainties and Recommended Best Practices. Agric. For. Meteorol. 2016, 228, 315–326. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. Environmental Biophysics; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Li, M.; Jiang, Y.; Coimbra, C.F.M. On the Determination of Atmospheric Longwave Irradiance under All-Sky Conditions. Sol. Energy 2017, 144, 40–48. [Google Scholar] [CrossRef]
- Crawford, T.M.; Duchon, C.E. An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation. J. Appl. Meteor. 1999, 38, 474–480. [Google Scholar] [CrossRef]
- Zhang, K.; McDowell, T.P.; Kummert, M. Sky Temperature Estimation and Measurement for Longwave Radiation Calculation. Build. Simul. 2017, 15, 2093–2102. [Google Scholar]
- Brunt, D. Notes on Radiation in the Atmosphere. I. Q. J. R. Meteorol. Soc. 1932, 58, 389–420. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Venkataanusha, P.; Anuradga, C.; Murty, P.; Chebrolu, S.K. Detecting Outliers in High Dimensional Data Sets Using Z-Score Methodology. Int. J. Innov. Technol. Explor. Eng. (IJIT) 2019, 9, 48–53. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy Temperature as a Crop Water Stress Indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating Evapotranspiration and Drought Stress with Ground-Based Thermal Remote Sensing in Agriculture: A Review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef]
- Ruiz-Peñalver, L.; Vera-Repullo, J.A.; Jiménez-Buendía, M.; Guzmán, I.; Molina-Martínez, J.M. Development of an Innovative Low Cost Weighing Lysimeter for Potted Plants: Application in Lysimetric Stations. Agric. Water Manag. 2015, 151, 103–113. [Google Scholar] [CrossRef]
- Bartusek, S.; Kornhuber, K.; Ting, M. 2021 North American Heatwave Amplified by Climate Change-Driven Nonlinear Interactions. Nat. Clim. Chang. 2022, 12, 1143–1150. [Google Scholar] [CrossRef]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing Probability of Record-Shattering Climate Extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. [Google Scholar]
- Prueger, J.H.; Parry, C.K.; Kustas, W.P.; Alfieri, J.G.; Alsina, M.M.; Nieto, H.; Wilson, T.G.; Hipps, L.E.; Anderson, M.C.; Hatfield, J.L.; et al. Crop Water Stress Index of an Irrigated Vineyard in the Central Valley of California. Irrig. Sci. 2019, 37, 297–313. [Google Scholar] [CrossRef]
- Parihar, G.; Saha, S.; Giri, L.I. Application of Infrared Thermography for Irrigation Scheduling of Horticulture Plants. Smart Agric. Technol. 2021, 1, 100021. [Google Scholar] [CrossRef]
- Liu, M.; Guan, H.; Ma, X.; Yu, S.; Liu, G. Recognition Method of Thermal Infrared Images of Plant Canopies Based on the Characteristic Registration of Heterogeneous Images. Comput. Electron. Agric. 2020, 177, 105678. [Google Scholar] [CrossRef]
- Liu, L.; Gao, X.; Ren, C.; Cheng, X.; Zhou, Y.; Huang, H.; Zhang, J.; Ba, Y. Applicability of the Crop Water Stress Index Based on Canopy–Air Temperature Differences for Monitoring Water Status in a Cork Oak Plantation, Northern China. Agric. For. Meteorol. 2022, 327, 109226. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant Responses to Rising Vapor Pressure Deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Santana, V.; Rodriguez-Dominguez, C.M.; Sebastian-Azcona, J.; Perez-Romero, L.F.; Diaz-Espejo, A. Role of Hydraulic Traits in Stomatal Regulation of Transpiration under Different Vapour Pressure Deficits across Five Mediterranean Tree Crops. J. Exp. Bot. 2023, 74, 4597–4612. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, G.; Carraro, V.; Suarez Huerta, E.; Anfodillo, T. Assessment of Canopy Conductance Responses to Vapor Pressure Deficit in Eight Hazelnut Orchards Across Continents. Front. Plant Sci. 2021, 12, 767916. [Google Scholar] [CrossRef]
- Mingeau, M.; Ameglio, T.; Pons, B.; Rousseau, P. Effects of Water Stress on Development Growth and Yield of Hazelnut Trees. Acta Hortic. 1994, 351, 305–314. [Google Scholar] [CrossRef]
- Marsal, J.; Girona, J.; Mata, M. Leaf Water Relation Parameters in Almond Compared to Hazelnut Trees during a Deficit Irrigation Period. J. Am. Soc. Hortic. Sci. 1997, 122, 582–587. [Google Scholar] [CrossRef]
- Hogg, E.H.; Saugier, B.; Pontailler, J.-Y.; Black, T.A.; Chen, W.; Hurdle, P.A.; Wu, A. Responses of Trembling Aspen and Hazelnut to Vapor Pressure Deficit in a Boreal Deciduous Forest. Tree Physiol. 2000, 20, 725–734. [Google Scholar] [CrossRef]
- Sheridan, R.A.; Nackley, L.L. Applying Plant Hydraulic Physiology Methods to Investigate Desiccation During Prolonged Cold Storage of Horticultural Trees. Front. Plant Sci. 2022, 13, 818769. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Villalobos-Soublett, E.; Riveros-Burgos, C.; Zúñiga, M.; Ahumada-Orellana, L.E. Effect of Irrigation Cut-off Strategies on Yield, Water Productivity and Gas Exchange in a Drip-Irrigated Hazelnut (Corylus avellana L. Cv. Tonda Di Giffoni) Orchard under Semiarid Conditions. Agric. Water Manag. 2020, 238, 106173. [Google Scholar] [CrossRef]
IRT # | Multiplier [°C/°C] | Offset [°C] | RMSE [°C] | R2 | TAmb Range [°C] |
---|---|---|---|---|---|
1 | 1.06 | −0.97 | 0.17 | 0.99 | 15.2–30.5 |
2 | 1.04 | −0.35 | 0.06 | 0.99 | 16.7–27.7 |
3 | 1.02 | −0.45 | 0.07 | 1.00 | 18.3–34.5 |
4 | 0.99 | 0.52 | 0.07 | 0.99 | 15.3–29.5 |
5 | 1.00 | 0.04 | 0.08 | 1.00 | 16.8–34.7 |
6 | 1.00 | 0.07 | 0.08 | 1.00 | 16.5–25.5 |
7 | 1.01 | 0.06 | 0.07 | 1.00 | 17.5–26.8 |
8 | 1.01 | −0.15 | 0.09 | 1.00 | 17.4–28.0 |
9 | 0.99 | 0.29 | 0.07 | 1.00 | 19.1–25.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCauley, D.; Keller, S.; Transue, K.; Wiman, N.; Nackley, L. A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers. Sensors 2024, 24, 7764. https://doi.org/10.3390/s24237764
McCauley D, Keller S, Transue K, Wiman N, Nackley L. A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers. Sensors. 2024; 24(23):7764. https://doi.org/10.3390/s24237764
Chicago/Turabian StyleMcCauley, Dalyn, Sadie Keller, Kody Transue, Nik Wiman, and Lloyd Nackley. 2024. "A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers" Sensors 24, no. 23: 7764. https://doi.org/10.3390/s24237764
APA StyleMcCauley, D., Keller, S., Transue, K., Wiman, N., & Nackley, L. (2024). A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers. Sensors, 24(23), 7764. https://doi.org/10.3390/s24237764