Adjoint-Assisted Shape Optimization of Microlenses for CMOS Image Sensors
Abstract
:1. Introduction
2. Optimization of CMOS Microlenses
2.1. Computational Methodology
2.2. Device Modeling
2.3. Shape Optimization
2.3.1. Figure of Merit (FOM)
2.3.2. Optimization Geometry
2.3.3. Gradient-Based Optimization
3. Adjoint Sensitivity Analysis (ASA)
- Forward simulation: The original simulation that includes a physical field driven by an original source.
- Adjoint simulation: An extra backward simulation that includes a nonphysical field driven by a modified source.
4. Results
4.1. Polarization-Specific Optimization
4.2. Incident Angles
4.3. Parameterization
4.4. Region of Interest (ROI)
4.5. Optical Efficiency (OE)
4.6. Optimization in 3D
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Zhang, J.; Yang, C.; Zhang, X. Performance Simulation and Architecture Optimization for CMOS Image Sensor Pixels Scaling Down to 1.0 μm. IEEE Trans. Electron Devices 2010, 57, 788–794. [Google Scholar] [CrossRef]
- Bigas, M.; Cabruja, E.; Forest, J.; Salvi, J. Review of CMOS Image Sensors. Microelectron. J. 2006, 37, 433–451. [Google Scholar] [CrossRef]
- Rhodes, H.; Agranov, G.; Hong, C.; Boettiger, U.; Mauritzson, R.; Ladd, J.; Karasev, I.; McKee, J.; Jenkins, E.; Quinlin, W.; et al. CMOS Imager Technology Shrinks and Image Performance. In Proceedings of the 2004 IEEE Workshop on Microelectronics and Electron Devices, Boise, ID, USA, 13–15 December 2004; pp. 7–18. [Google Scholar]
- McCleary, B. Cross-Talk Correction Methodology for Color CMOS Imagers. In Proceedings of the Digital Photography, San Francisco, CA, USA, 23 February 2005; SPIE: San Jose, CA, USA, 2005; Volume 5678, p. 117. [Google Scholar]
- Fossati, C.; Gagliano, O.; Commandre, M.; Dunne, B. Microlens Design for CMOS Image Sensor. In Proceedings of the Optical Design and Engineering II, Jena, Germany, 30 September 2005; SPIE: Bellingham, WA, USA, 2005; p. 596229. [Google Scholar]
- Fesenmaier, C.C.; Huo, Y.; Catrysse, P.B. Optical Confinement Methods for Continued Scaling of CMOS Image Sensor Pixels. Opt. Express 2008, 16, 20457. [Google Scholar] [CrossRef] [PubMed]
- Anzagira, L.; Fossum, E.R. Color Filter Array Patterns for Small-Pixel Image Sensors with Substantial Cross Talk. J. Opt. Soc. Am. A 2015, 32, 28. [Google Scholar] [CrossRef] [PubMed]
- Agranov, G.; Berezin, V.; Tsai, R.H. Crosstalk and Microlens Study in a Color CMOS Image Sensor. IEEE Trans. Electron Devices 2003, 50, 4–11. [Google Scholar] [CrossRef]
- Vaillant, J.; Hirigoyen, F. Optical Simulation for CMOS Imager Microlens Optimization. In Proceedings of the Optical Sensing, Strasbourg, France, 1 September 2004; SPIE: Bellingham, WA, USA, 2004; Volume 5459, p. 200. [Google Scholar]
- Zhang, R.; Lai, L. Optical Design of Microlens Array for CMOS Image Sensors. In Proceedings of the 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Desgin, Manufacturing, and Testing of Micro-and Nano-Optical Devices and Systems, and Smart Structures and Materials, Suzhou, China, 25 October 2016; SPIE: Bellingham, WA, USA, 2016; p. 968502. [Google Scholar]
- Hirigoyen, F.; Crocherie, A.; Vaillant, J.M.; Cazaux, Y. FDTD-Based Optical Simulations Methodology for CMOS Image Sensors Pixels Architecture and Process Optimization. In Proceedings of the Sensors, Cameras, and Systems for Industrial/Scientific Applications IX, San Jose, CA, USA, 14 February 2008; SPIE: Bellingham, WA, USA, 2008; p. 681609. [Google Scholar]
- Crocherie, A.; Vaillant, J.; Hirigoyen, F. Three-Dimensional Broadband FDTD Optical Simulations of CMOS Image Sensor. In Proceedings of the Optical Design and Engineering III, Glasgow, UK, 27 September 2008; SPIE: Bellingham, WA, USA, 2008; Volume 7100, p. 71002. [Google Scholar]
- Huo, Y.; Fesenmaier, C.C.; Catrysse, P.B. Microlens Performance Limits in Sub-2 μm Pixel CMOS Image Sensors. Opt. Express 2010, 18, 5861. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, N.K.; Bandler, J.W.; Bakr, M.H. Adjoint Techniques for Sensitivity Analysis in High-Frequency Structure CAD. IEEE Trans. Microw. Theory Tech. 2004, 52, 403–419. [Google Scholar] [CrossRef]
- Georgieva, N.K.; Glavic, S.; Bakr, M.H.; Bandler, J.W. Feasible Adjoint Sensitivity Technique for EM Design Optimization. IEEE Trans. Microw. Theory Tech. 2002, 50, 2751–2758. [Google Scholar] [CrossRef]
- Nikolova, N.K.; Safian, R.; Soliman, E.A.; Bakr, M.H.; Bandler, J.W. Accelerated Gradient Based Optimization Using Adjoint Sensitivities. IEEE Trans. Antennas Propag. 2004, 52, 2147–2157. [Google Scholar] [CrossRef]
- Zhang, Y.; Ahmed, O.S.; Bakr, M.H. Wideband FDTD-Based Adjoint Sensitivity Analysis of Dispersive Electromagnetic Structures. IEEE Trans. Microw. Theory Tech. 2014, 62, 1122–1134. [Google Scholar] [CrossRef]
- Bakr, M.H.; Elsherbeni, A.; Demir, V. Adjoint Sensitivity Analysis of High Frequency Structures with MATLAB; Institution of Engineering and Technology (IET); SciTech Publishing Inc.: London, UK, 2017. [Google Scholar]
- Ghassemi, M.; Bakr, M.; Sangary, N. Antenna Design Exploiting Adjoint Sensitivity-based Geometry Evolution. IET Microw. Antennas Propag. 2013, 7, 268–276. [Google Scholar] [CrossRef]
- Koziel, S.; Mosler, F.; Reitzinger, S.; Thoma, P. Robust Microwave Design Optimization Using Adjoint Sensitivity and Trust Regions. Int. J. RF Microw. Comput. Eng. 2012, 22, 10–19. [Google Scholar] [CrossRef]
- Lalau-Keraly, C.M.; Bhargava, S.; Miller, O.D.; Yablonovitch, E. Adjoint Shape Optimization Applied to Electromagnetic Design. Opt. Express 2013, 21, 21693. [Google Scholar] [CrossRef] [PubMed]
- Michaels, A.; Wu, M.C.; Yablonovitch, E. Hierarchical Design and Optimization of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Lee, S.; Hong, J.; Kang, J.; Park, J.; Lim, J.; Lee, T.; Jang, M.S.; Chung, H. Inverse Design of Color Routers in CMOS Image Sensors: Toward Minimizing Interpixel Crosstalk. Nanophotonics 2024, 13, 3895–3914. [Google Scholar] [CrossRef]
- Park, C.; Lee, S.; Lee, T.; Kang, J.; Jeon, J.; Park, C.; Kim, S.; Chung, H.; Jang, M.S. Towards Subwavelength Pixels: Nanophotonic Color Routers for Ultra-Compact High-Efficiency CMOS Image Sensors. J. Opt. 2024, 26, 093002. [Google Scholar] [CrossRef]
- Wang, K.; Ren, X.; Chang, W.; Lu, L.; Liu, D.; Zhang, M. Inverse Design of Digital Nanophotonic Devices Using the Adjoint Method. Photonics Res. 2020, 8, 528. [Google Scholar] [CrossRef]
- Zhao, C.; Cheng, L.; Chen, H.; Mao, S.; Wang, Y.; Li, Q.; Fu, H.Y. Compact Dual-Mode Waveguide Crossing Based on Adjoint Shape Optimization. Opt. Lett. 2023, 48, 3873. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, A.C.R.; Fattal, D.A.; Gauger, N.R.; Fan, S.; Beausoleil, R.G. Sensitivity Analysis and Optimization of Sub-Wavelength Optical Gratings Using Adjoints. Opt. Express 2014, 22, 12971. [Google Scholar] [CrossRef]
- Sapra, N.V.; Vercruysse, D.; Su, L.; Yang, K.Y.; Skarda, J.; Piggott, A.Y.; Vuckovic, J. Inverse Design and Demonstration of Broadband Grating Couplers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Miller, O.D. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design. Ph.D. Thesis, University of California at Berkeley, Berkeley, CA, USA, 2012. [Google Scholar]
- Lalau-Keraly, C.M. Optimizing Nanophotonics: From Photoreceivers to Waveguides. Ph.D. Thesis, University of California at Berkeley, Berkeley, CA, USA, 2017. [Google Scholar]
- Neustock, L.T.; Hansen, P.C.; Russell, Z.E.; Hesselink, L. Inverse Design Tool for Ion Optical Devices Using the Adjoint Variable Method. Sci. Rep. 2019, 9, 11031. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Pan, X. Deep Learning and Adjoint Method Accelerated Inverse Design in Photonics: A Review. Photonics 2023, 10, 852. [Google Scholar] [CrossRef]
- Chung, Y.-S.; Lee, B.-J.; Kim, S.-C. Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization. J. Opt. Soc. Korea 2009, 13, 286–293. [Google Scholar] [CrossRef]
- Paganini, A.; Sargheini, S.; Hiptmair, R.; Hafner, C. Shape Optimization of Microlenses. Opt. Express 2015, 23, 13099. [Google Scholar] [CrossRef]
- Ansys Lumerical FDTD, Simulation of Photonic Components. Available online: https://www.ansys.com/products/optics/fdtd (accessed on 23 November 2024).
- Getting Started with LumOpt—Python API, Ansys Optics. Available online: https://optics.ansys.com/hc/en-us/articles/360050995394-Getting-Started-with-lumopt-Python-API (accessed on 23 November 2024).
- Kim, C.; Hong, J.; Jang, J.; Lee, G.-Y.; Kim, Y.; Jeong, Y.; Lee, B. Freeform Metasurface Color Router for Deep Submicron Pixel Image Sensors. Sci. Adv. 2024, 10, eadn9000. [Google Scholar] [CrossRef] [PubMed]
- Bryce, E. Bayer Color Imaging Array. U.S. Patent US3971065A, 20 July 1976. [Google Scholar]
- Angeris, G.; Vučković, J.; Boyd, S.P. Computational Bounds for Photonic Design. ACS Photonics 2019, 6, 1232–1239. [Google Scholar] [CrossRef]
- CMOS—Angular Response 2D, Ansys Optics Support. Available online: https://optics.ansys.com/hc/en-us/articles/360042357714-CMOS-Angular-response-2D (accessed on 23 November 2024).
- Akima, H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. ACM 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Dyer, S.A.; Dyer, J.S. Cubic-Spline Interpolation. 1. IEEE Instrum. Meas. Mag. 2001, 4, 44–46. [Google Scholar] [CrossRef]
- Liu, D.C.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Bakr, M.H. Nonlinear Optimization in Electrical Engineering with Applications in MATLAB; The Institution of Engineering and Technology: London, UK, 2013. [Google Scholar]
- CMOS Image Sensor—Angular Response 3D. Available online: https://optics.ansys.com/hc/en-us/articles/360042358574-CMOS-image-sensor-Angular-response-3D (accessed on 23 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfin, R.; Niegemann, J.; McGuire, D.; Bakr, M.H. Adjoint-Assisted Shape Optimization of Microlenses for CMOS Image Sensors. Sensors 2024, 24, 7693. https://doi.org/10.3390/s24237693
Arfin R, Niegemann J, McGuire D, Bakr MH. Adjoint-Assisted Shape Optimization of Microlenses for CMOS Image Sensors. Sensors. 2024; 24(23):7693. https://doi.org/10.3390/s24237693
Chicago/Turabian StyleArfin, Rishad, Jens Niegemann, Dylan McGuire, and Mohamed H. Bakr. 2024. "Adjoint-Assisted Shape Optimization of Microlenses for CMOS Image Sensors" Sensors 24, no. 23: 7693. https://doi.org/10.3390/s24237693
APA StyleArfin, R., Niegemann, J., McGuire, D., & Bakr, M. H. (2024). Adjoint-Assisted Shape Optimization of Microlenses for CMOS Image Sensors. Sensors, 24(23), 7693. https://doi.org/10.3390/s24237693