Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niklas, C.; Wackerbarth, H.; Ctistis, G. A Short Review of Cavity-Enhanced Raman Spectroscopy for Gas Analysis. Sensors 2021, 21, 1698. [Google Scholar] [CrossRef] [PubMed]
- Allsop, T.; Neal, R. A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. Sensors 2021, 21, 6755. [Google Scholar] [CrossRef] [PubMed]
- Ettabib, M.A.; Liu, Z.; Zervas, M.N.; Bartlett, P.N.; Wilkinson, J.S. Waveguide-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2024, 4, 5. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Auguié, B. Enhancement Factors: A Central Concept During 50 Years of Surface-Enhanced Raman Spectroscopy. ACS Nano 2024, 18, 9773–9783. [Google Scholar] [CrossRef]
- Walrafen, G.; Stone, J. Intensification of Spontaneous Raman Spectra by Use of Liquid Core Optical Fibers. Appl. Spectrosc. 1972, 26, 585–589. [Google Scholar] [CrossRef]
- Blohm, A.; Domes, C.; Frosch, T. Isotopomeric Peak Assignment for N2O in Cross-Labeling Experiments by Fiber-Enhanced Raman Multigas Spectroscopy. Anal. Chem. 2024, 96, 2883–2892. [Google Scholar] [CrossRef]
- Blohm, A.; Domes, C.; Merian, A.; Wolf, S.; Popp, J.; Frosch, T. Comprehensive Multi-gas Study by Means of Fiber-enhanced Raman Spectroscopy for the Investigation of nitrogen Cycle Processes. Analyst 2024, 149, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D. Fuel Flexibility via Real-time Raman Fuel-gas Analysis for Turbine System Control. In Proceedings of the Next-Generation Spectroscopic Technologies VIII, Baltimore, MD, USA, 20–22 April 2015; pp. 148–157. [Google Scholar]
- Buric, M.P. Gas Phase Raman Spectroscopy using Hollow Waveguides. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2011. [Google Scholar]
- Ettabib, M.A.; Marti, A.; Liu, Z.; Bowden, B.M.; Zervas, M.N.; Bartlett, P.N.; Wilkinson, J.S. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review. ACS Sens. 2021, 6, 2025–2045. [Google Scholar] [CrossRef]
- James, T.M.; Rupp, S.; Telle, H.H. Trace Gas and Dynamic Process Monitoring by Raman Spectroscopy in Metal-coated Hollow Glass Fibres. Anal. Methods 2015, 7, 2568–2576. [Google Scholar] [CrossRef]
- Petrov, D.V.; Matrosov, I.I. Raman Gas Analyzer (RGA): Natural Gas Measurements. Appl. Spectrosc. 2016, 70, 1770–1776. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, X.; Xu, W.; Xu, S. Waveguide-based Raman Enhancement Strategies. J. Raman Spectrosc. 2024, 55, 355–376. [Google Scholar] [CrossRef]
- Bai, Y.; Xiong, D.; Yao, Z.; Wang, X.; Zuo, D. Analysis of CH4, C2H6, C2H4, C2H2, H2, CO, and H2S by Forward Raman Scattering with a Hollow-core Anti-resonant Fiber. J. Raman Spectrosc. 2022, 53, 1023–1031. [Google Scholar] [CrossRef]
- Fang, J.; Chou, I.M.; Chen, Y. Quantitative Raman Spectroscopic Study of the H2─CH4 Gaseous System. J. Raman Spectrosc. 2018, 49, 710–720. [Google Scholar] [CrossRef]
- Fouche, D.; Chang, R. Relative Raman Cross Section for O3, CH4, C3H8, NO, N2O, and H2. Appl. Phys. Lett. 1972, 20, 256–257. [Google Scholar] [CrossRef]
- Ashok, J.; Pati, S.; Hongmanorom, P.; Tianxi, Z.; Junmei, C.; Kawi, S. A Review of Recent Catalyst Advances in CO2 Methanation Processes. Catal. Today 2020, 356, 471–489. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, J.; Luo, W.; Li, M.; Moioli, E.; Spodaryk, M.; Züttel, A. A Combined Diffuse Reflectance Infrared Fourier Transform Spectroscopy–Mass Spectroscopy–Gas Chromatography for the Operando Study of the Heterogeneously Catalyzed CO2 Hydrogenation Over Transition Metal-based Catalysts. Rev. Sci. Instrum. 2020, 91, 074102. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A Review on Ammonia, Ammonia-Hydrogen and Ammonia-methane Fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Klerke, A.; Christensen, C.H.; Nørskov, J.K.; Vegge, T. Ammonia for Hydrogen Storage: Challenges and Opportunities. J. Mater. Chem. 2008, 18, 2304–2310. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for Hydrogen Storage; A Review of Catalytic Ammonia Decomposition and Hydrogen Separation and Purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D.S. Ammonia as a Possible Element in an Energy Infrastructure: Catalysts for Ammonia Decomposition. Energy Environ. Sci. 2012, 5, 6278–6289. [Google Scholar] [CrossRef]
- Song, X.; Basheer, C.; Zare, R.N. Making Ammonia from Nitrogen and Water Microdroplets. Proc. Natl. Acad. Sci. USA 2023, 120, e2301206120. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.D.; Gluhoi, A.C.; Nieuwenhuys, B.E. Ammonia Oxidation over Au/MOx/γ-Al2O3—Activity, Selectivity and FTIR Measurements. Catal. Today 2004, 90, 3–14. [Google Scholar] [CrossRef]
- Miyazaki, A.; Balint, I.; Aika, K.-i.; Nakano, Y. Preparation of Ru Nanoparticles Supported on γ-Al2O3 and its Novel Catalytic Activity for Ammonia Synthesis. J. Catal. 2001, 204, 364–371. [Google Scholar] [CrossRef]
- Yin, S.; Xu, B.; Zhou, X.; Au, C. A Mini-review on Ammonia Decomposition Catalysts for On-site Generation of Hydrogen for Fuel Cell Applications. Appl. Catal. A Gen. 2004, 277, 1–9. [Google Scholar] [CrossRef]
- Fenner, W.R.; Hyatt, H.A.; Kellam, J.M.; Porto, S. Raman Cross Section of Some Simple Gases. JOSA 1973, 63, 73–77. [Google Scholar] [CrossRef]
- Schrötter, H.; Klöckner, H. Raman scattering Cross Sections in Gases and Liquids. In Raman Spectroscopy of Gases and Liquids; Springer: Berline/Heidelberg, Germany, 1979; pp. 123–166. [Google Scholar]
- Kowalczyk, Z.; Sentek, J.; Jodzis, S.; Muhler, M.; Hinrichsen, O. Effect of Potassium on the Kinetics of Ammonia Synthesis and Decomposition Over Fused Iron Catalyst at Atmospheric Pressure. J. Catal. 1997, 169, 407–414. [Google Scholar] [CrossRef]
- McCullough, K.; Chiang, P.-H.; Jimenez, J.D.; Lauterbach, J.A. Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition. Materials 2020, 13, 1869. [Google Scholar] [CrossRef]
- Pearman, W.F.; Carter, J.C.; Angel, S.M.; Chan, J.W.-J. Multipass Capillary Cell for Enhanced Raman Measurements of Gases. Appl. Spectrosc. 2008, 62, 285–289. [Google Scholar] [CrossRef]
- Lascola, R.; O’Rourke, P.E.; Immel, D.M. Development of a Nuclear Fuel Dissolution Monitor Based on Raman Spectroscopy. Sensors 2024, 24, 607. [Google Scholar] [CrossRef]
- Kelly, J.T.; Lascola, R. Online Monitoring of Hydrogen Processing Using Hollow-core Waveguide-based Raman Spectroscopy. In Proceedings of the Optical Waveguide and Laser Sensors III, National Habor, MD, USA, 21–25 April 2024; pp. 40–44. [Google Scholar]
- Yang, C.; Ezendeeva, D.; Yu, T.; Magnotti, G. Temperature Dependent Raman Spectra of Ammonia Ranging from 3150 cm−1 to 3810 cm−1 for Combustion Applications. Opt. Express 2021, 29, 33234–33244. [Google Scholar] [CrossRef]
- Knebl, A.; Yan, D.; Popp, J.; Frosch, T. Fiber Enhanced Raman Gas Spectroscopy. TrAC Trends Anal. Chem. 2018, 103, 230–238. [Google Scholar] [CrossRef]
- Okajima, H.; Hamaguchi, H.o. Accurate Intensity Calibration for Low Wavenumber (−150 to 150 cm−1) Raman Spectroscopy using the Pure Rotational Spectrum of N2. J. Raman Spectrosc. 2015, 46, 1140–1144. [Google Scholar] [CrossRef]
- Raj, A.; Kato, C.; Witek, H.A.; Hamaguchi, H.o. Toward Standardization of Raman Spectroscopy: Accurate Wavenumber and Intensity Calibration using Rotational Raman Spectra of H2, HD, D2, and Vibration–Rotation Spectrum of O2. J. Raman Spectrosc. 2020, 51, 2066–2082. [Google Scholar] [CrossRef]
- Lewis, C.M.; Houston, W.V. The Raman Effect in Ammonia and Some Other Gases. Phys. Rev. 1933, 44, 903. [Google Scholar] [CrossRef]
- Felmy, H.M.; Cox, R.M.; Espley, A.F.; Campbell, E.L.; Kersten, B.R.; Lackey, H.E.; Branch, S.D.; Bryan, S.A.; Lines, A.M. Quantification of Hydrogen Isotopes Utilizing Raman Spectroscopy Paired with Chemometric Analysis for Application across Multiple Systems. Anal. Chem. 2024, 96, 7220–7230. [Google Scholar] [CrossRef] [PubMed]
- Sadergaski, L.R.; Andrews, H.B.; Wilson, B.A. Comparing Sensor Fusion and Multimodal Chemometric Models for Monitoring U(VI) in Complex Environments Representative of Irradiated Nuclear Fuel. Anal. Chem. 2024, 96, 1759–1766. [Google Scholar] [CrossRef]
- Sadergaski, L.R.; Hager, T.J.; Andrews, H.B. Design of Experiments, Chemometrics, and Raman Spectroscopy for the Quantification of Hydroxylammonium, Nitrate, and Nitric acid. ACS Omega 2022, 7, 7287–7296. [Google Scholar] [CrossRef]
- Andrews, H.B.; Sadergaski, L.R. Automated Calibration for Rapid Optical Spectroscopy Sensor Development for Online Monitoring. ACS Sens. 2024, 9, 6257–6264. [Google Scholar] [CrossRef]
- Wright, J.; Torres, R.; Peters, B.; Hope, D.; Tovo, L. In-line Chemical Sensor Deployment in a Tritium Plant. Fusion Sci. Technol. 2015, 67, 639–642. [Google Scholar] [CrossRef]
- Garcia-Diaz, B.L.; Babineau, D.; Klein, J.; Allgood, R.; Larsen, G.; Flynn, H.B.; Hitchcock, D.; Krentz, T.; Dandeneau, C.; Angelette, L. Technology Development and Materials Research to Enable a Sustainable DT Fusion Energy Fuel Cycle. J. S. Carol. Acad. Sci. 2024, 22, 2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, J.T.; Koch, C.J.; Lascola, R.; Guin, T. Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy. Sensors 2024, 24, 7501. https://doi.org/10.3390/s24237501
Kelly JT, Koch CJ, Lascola R, Guin T. Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy. Sensors. 2024; 24(23):7501. https://doi.org/10.3390/s24237501
Chicago/Turabian StyleKelly, John T., Christopher J. Koch, Robert Lascola, and Tyler Guin. 2024. "Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy" Sensors 24, no. 23: 7501. https://doi.org/10.3390/s24237501
APA StyleKelly, J. T., Koch, C. J., Lascola, R., & Guin, T. (2024). Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy. Sensors, 24(23), 7501. https://doi.org/10.3390/s24237501