Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx
Abstract
1. Introduction
2. Experimental
2.1. Fabrication of Sensors
2.2. Evaluation of Sensing Characteristics
3. Results and Discussion
3.1. Screening of Nitric Oxide Sensing Materials and Developing a High-Performance NO Sensor
3.2. Screening of Nitric Dioxide Sensing Materials and Developing a High-Performance NO2 Sensor
3.3. Study on the Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abman, S.H.; Hansmann, G.; Archer, S.L.; Ivy, D.D.; Adatia, I.; Chung, W.K.; Hanna, B.D.; Rosenzweig, E.B.; Raj, J.U.; Cornfield, D.; et al. Pediatric Pulmonary Hypertension. Circulation 2015, 132, 2037–2099. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, A.; Kadry, H.; Alobaida, A.; Ahsan, F. Newer approaches and novel drugs for inhalational therapy for pulmonary arterial hypertension. Expert Opin. Drug Deliv. 2020, 17, 439–461. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, J.P.; Parker, T.A.; Ivy, D.D.; Abman, S.H. Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congential diaphragmatic hernia. J. Pediatr. 2003, 142, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, F.; Roberts, J.D.; Zapol, W.M. Inhaled Nitric Oxide. Circulation 2004, 109, 3106–3111. [Google Scholar] [CrossRef] [PubMed]
- Preston, I.R.; Sagliani, K.D.; Roberts, K.E.; Shah, A.M.; DeSouza, S.A.; Howard, W.; Brennan, J.; Hill, N.S. Comparison of Acute Hemodynamic Effects of Inhaled Nitric Oxide and Inhaled Epoprostenol in Patients with Pulmonary Hypertension. Pulm. Circ. 2013, 3, 68–73. [Google Scholar] [CrossRef]
- Barst, R.J.; Channick, R.; Ivy, D.; Goldstein, B. Clinical Perspectives with Long-Term Pulsed Inhaled Nitric Oxide for the Treatment of Pulmonary Arterial Hypertension. Pulm. Circ. 2012, 2, 139–147. [Google Scholar] [CrossRef]
- Bernier, M.L.; Romer, L.H.; Bembea, M.M. Spectrum of Current Management of Pediatric Pulmonary Hypertensive Crisis. Crit. Care Explor. 2019, 1, e0037. [Google Scholar] [CrossRef]
- DiBlasi, R.M.; Myers, T.R.; Hess, D.R. Evidence-based clinical practice guideline: Inhaled nitric oxide for neonates with acute hypoxic respiratory failure. Respir. Care 2010, 55, 1717–1745. [Google Scholar]
- Weinberger, B.; Laskin, D.L.; Heck, D.E.; Laskin, J.D. The toxicology of inhaled nitric oxide. Toxicol. Sci. 2001, 59, 5–16. [Google Scholar] [CrossRef]
- McMullan, D.M.; Bekker, J.M.; Johengen, M.J.; Hendricks-Munoz, K.; Gerrets, R.; Black, S.M.; Fineman, J.R. Inhaled nitric oxide-induced rebound pulmonary hypertension: Role for endothelin-1. Am. J. Physiol.-Heart Circ. Physiol. 2001, 280, H777–H785. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Jiang, C.; Su, Z.; Yan, Y.; Feng, B.; Mao, W.; Zhang, Y.; Wang, X.; Xu, Z.; et al. An electrochemical nitric oxide generator for in-home inhalation therapy in pulmonary artery hypertension. BMC Med. 2022, 20, 481. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, W.; Li, Y. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sens. Actuators B Chem. 2022, 359, 131579. [Google Scholar] [CrossRef]
- Miura, N.; Sato, T.; Anggraini, S.A.; Ikeda, H.; Zhuiykov, S. A review of mixed-potential type zirconia-based gas sensors. Ionics 2014, 20, 901–925. [Google Scholar] [CrossRef]
- Zou, J.; Liu, X.; Jin, H.; Zhan, Z.; Jian, J. NO2 sensing properties of electrode-supported sensor by tape casting and co-firing method. Ionics 2015, 21, 2655–2662. [Google Scholar] [CrossRef]
- Fergus, J. Materials for high temperature electrochemical NOx gas sensors. Sens. Actuators B Chem. 2007, 121, 652–663. [Google Scholar] [CrossRef]
- Park, C.O.; Miura, N. Absolute potential analysis of the mixed potential occurring at the oxide/YSZ electrode at high temperature in NO-containing air. Sens. Actuators B Chem. 2006, 113, 316–319. [Google Scholar] [CrossRef]
- Ramaiyan, K.P.; Mukundan, R. Editors’ Choice—Review—Recent Advances in Mixed Potential Sensors. J. Electrochem. Soc. 2020, 167, 037547. [Google Scholar] [CrossRef]
- Romanytsia, I.; Viricelle, J.-P.; Vernoux, P.; Pijolat, C. Application of advanced morphology Au–X (X=YSZ, ZrO2) composites as sensing electrode for solid state mixed-potential exhaust NOx sensor. Sens. Actuators B Chem. 2015, 207, 391–397. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Jiang, L.; You, R.; Wang, Q.; Wang, C.; Lin, Z.; Yang, Z.; He, J.; Liu, A.; et al. Compact and planar type rapid response ppb-level SO2 sensor based on stabilized zirconia and SrMoO4 sensing electrode. Sens. Actuators B Chem. 2020, 307, 127655. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Z.; Lin, J.; Zhao, J.; Hoa, N.D.; Hieu, N.V.; Ganeev, A.A.; Chuchina, V.; Jouyban, A.; Cui, D.; et al. Integrated Smart Gas Tracking Device with Artificially Tailored Selectivity for Real-Time Monitoring Food Freshness. Sensors 2023, 23, 8109. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Jiang, L.; Zhao, L.; Wang, J.; Liu, F.; Wang, C.; Yan, X.; Sun, P.; Wang, L.; et al. Mixed potential type YSZ-based NO2 sensors with efficient three-dimensional three-phase boundary processed by electrospinning. Sens. Actuators B Chem. 2022, 354, 131219. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, C.; Zheng, X.; Hong, X. Medium-Low-Temperature NO2 Sensor Based on YSZ Solid Electrolyte and Mesoporous WO3 Sensing Electrode for Detection of Vehicle Emissions. Nano 2021, 16, 2150083. [Google Scholar] [CrossRef]
- Xu, J.; Wang, C.; Yang, B.; Yu, H.; Xia, F.; Xiao, J. Superior sensitive NiFe2O4 electrode for mixed-potential NO2 sensor. Ceram. Int. 2019, 45, 2962–2967. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Liu, A.; You, R.; Liu, F.; Li, S.; Zhao, L.; Jin, R.; He, J.; Yang, Z.; et al. High-response mixed-potential type planar YSZ-based NO2 sensor coupled with CoTiO3 sensing electrode. Sens. Actuators B Chem. 2019, 287, 185–190. [Google Scholar] [CrossRef]
- Chen, Y. Effects of Electrode Microstructures on the Sensitivity and Response Time of Mixed-Potential NO2 Sensor Based on La0.6Sr0.4CoO3 Sensing Electrode. IEEE Sens. J. 2021, 21, 8621–8626. [Google Scholar] [CrossRef]
- Miura, N.; Akisada, K.; Wang, J.; Zhuiykov, S.; Ono, T. Mixed-potential-type NOx sensor based on YSZ and zinc oxide sensing electrode. Ionics 2004, 10, 1–9. [Google Scholar] [CrossRef]
- White, B.; Chatterjee, S.; Macam, E.; Wachsman, E. Effect of Electrode Microstructure on the Sensitivity and Response Time of Potentiometric NO Sensors. J. Am. Ceram. Soc. 2008, 91, 2024–2031. [Google Scholar] [CrossRef]
- Szabo, N.F.; Du, H.; Akbar, S.A.; Soliman, A.; Dutta, P.K. Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments. Sens. Actuators B Chem. 2002, 82, 142–149. [Google Scholar] [CrossRef]
- Franke, D.; Zosel, J.; Guth, U. NO sensitivity of perovskite-type electrode materials La0.6Ca0.4B′1−xB″xO3±δ (B′=Mn, Cr; B″=Ni, Fe, Co; x=0, 0.1, …, 0.6) in mixed potential sensors. Sens. Actuators B Chem. 2016, 223, 723–729. [Google Scholar] [CrossRef]
- Jin, H.; Huang, Y.; Jian, J. Plate-like Cr2O3 for highly selective sensing of nitric oxide. Sens. Actuators B Chem. 2015, 206, 107–110. [Google Scholar] [CrossRef]
- Jin, H.; Huang, Y.; Jian, J. Sensing mechanism of the zirconia-based highly selective NO sensor by using a plate-like Cr2O3 sensing electrode. Sens. Actuators B Chem. 2015, 219, 112–118. [Google Scholar] [CrossRef]
- Miura, N.; Lu, G.; Yamazoe, N. Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ionics 2000, 136–137, 533–542. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Wang, H.; Yang, Y.; Liu, Z.-M.; Yang, H.-F.; Shen, G.-L.; Yu, R.-Q. Hydrogen sulfide sensing properties of NiFe2O4 nanopowder doped with noble metals. Sens. Actuators B Chem. 2004, 102, 148–154. [Google Scholar] [CrossRef]
- Zhuiykov, S.; Muta, M.; Ono, T.; Hasei, M.; Yamazoe, N.; Miura, N. Stabilized Zirconia-Based NOx Sensor Using ZnFe2O4 Sensing Electrode. Electrochem. Solid-State Lett. 2001, 4, H19. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Yu, H.; Xiong, H.; Chen, Y.; Wang, C.; Xiao, J. Promoted Carbon Monoxide Sensing Performance of a Bi2Mn4O10-Based Mixed-Potential Sensor by Regulating Oxygen Vacancies. ACS Sens. 2022, 7, 2978–2986. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Shi, Y.; Tang, B.; Zhang, J. Black Phosphorus–Tungsten Oxide Sandwich-like Nanostructures for Highly Selective NO2 Detection. Sensors 2024, 24, 1376. [Google Scholar] [CrossRef]
- Sangale, S.S.; Jadhav, V.V.; Shaikh, S.F.; Shinde, P.V.; Ghule, B.G.; Raut, S.D.; Tamboli, M.S.; Al-Enizi, A.M.; Mane, R.S. Facile one-step hydrothermal synthesis and room-temperature NO2 sensing application of α-Fe2O3 sensor. Mater. Chem. Phys. 2020, 246, 122799. [Google Scholar] [CrossRef]
- Goeders, K.M.; Colton, J.S.; Bottomley, L.A. Microcantilevers: Sensing Chemical Interactions via Mechanical Motion. Chem. Rev. 2008, 108, 522–542. [Google Scholar] [CrossRef]
- Xu, T.; Xu, P.; Zheng, D.; Yu, H.; Li, X. Metal–Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules. Anal. Chem. 2016, 88, 12234–12240. [Google Scholar] [CrossRef]
Sensor Structure SE |YSZ| RE | Temperature (°C) | Detection Range (ppm) | ΔV/Concentration | Ref. |
---|---|---|---|---|
WO3 |YSZ| Pt | 300 | 30–500 | 22 mv/30 ppm NO2 (in 5% O2) | [22] |
NiFe2O4 |YSZ| Pt | 400 | 100–500 | 81.3 mv/100 ppm NO2 (in 10% O2) | [23] |
CoTiO3 |YSZ| Pt | 650 | 20–200 | 130 mv/100 ppm NO2 (in 5% O2) | [24] |
La0.6Sr0.4CoO3 |YSZ| Pt | 400 | 100–500 | 125 mv/400 ppm NO2 (in 10% O2) | [25] |
ZnO |YSZ| Pt | 700 | 40–400 | −12 mv/100 ppm NO (in 21% O2) | [26] |
La2CuO4 |YSZ| Pt | 450 | 50–650 | 20 mv/650 ppm NO (in 3% O2) | [27] |
Pt |YSZ pellet| Pt | 500 | 100–800 | 13 mv/800 ppm NO (in 3% O2) | [28] |
LCMF |YSZ| Pt | 550 | —— | −62 mv/400 ppm NO (in 1.5% O2) | [29] |
NiO |YSZ| MnO2 NiFe2O4 + 30%Fe2O3 |YSZ| MnO2 | 310 390 | 10–100 1.5–10 | −22.7 mv/100 ppm NO 13.8 mv/3 ppm NO2 (in 21% O2) | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yi, C.; Chen, T.; Zhao, Y.; Zhang, Y.; Jin, H. Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx. Sensors 2024, 24, 7378. https://doi.org/10.3390/s24227378
Zhang Z, Yi C, Chen T, Zhao Y, Zhang Y, Jin H. Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx. Sensors. 2024; 24(22):7378. https://doi.org/10.3390/s24227378
Chicago/Turabian StyleZhang, Zhenghu, Chenghan Yi, Tao Chen, Yangbo Zhao, Yuyan Zhang, and Han Jin. 2024. "Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx" Sensors 24, no. 22: 7378. https://doi.org/10.3390/s24227378
APA StyleZhang, Z., Yi, C., Chen, T., Zhao, Y., Zhang, Y., & Jin, H. (2024). Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx. Sensors, 24(22), 7378. https://doi.org/10.3390/s24227378