Research on the Quantitative Inversion of Soil Iron Oxide Content Using Hyperspectral Remote Sensing and Machine Learning Algorithms in the Lufeng Annular Structural Area of Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Data Acquisition
2.3. Data Preprocessing
2.4. Characteristic Wavelength Selection
2.5. Modeling and Accuracy Evaluation
2.5.1. Modeling
2.5.2. Evaluation of Model Accuracy
3. Results and Analysis
3.1. Statistical Characterization of Soil Iron Oxide Content
3.2. Characterization of Soil Spectral Profiles
3.3. Correlation Analysis between Spectra and Iron Oxide Content
3.4. Selection of Characteristic Bands
3.5. Inversion Model Construction and Accuracy Evaluation
3.5.1. Analysis of PLSR Model Prediction Results
3.5.2. Analysis of RF Model Prediction Results
3.5.3. Analysis of XGBoost Model Prediction Results
3.5.4. Model Accuracy Comparison
4. Discussion
5. Conclusions
- (1)
- The spectral transformation of OR using CR, RL, SNV, and FD further determined the correlation between soil iron oxides and spectra: OR was negatively correlated with soil iron oxide content; RL was positively correlated with iron oxide content; and CR, RL, and SNV could improve the correlation coefficients. In addition, the FD transformation improved the sensitivity of the spectral curves and effectively highlighted more detailed spectral characteristics, thus positively affecting the prediction accuracy of the model.
- (2)
- The selection of characteristic bands contributes positively to improving the model’s accuracy. The CC-Boruta algorithm can effectively remove some random noise and interference information. The feature band selection is small and targeted, which, to some extent, minimizes the optimal combination of features and has a better effect on simplifying the model and improving its stability. In addition, it is worth noting that the CC-CARS method significantly outperforms the CC-Boruta method in capturing the characteristic wavelengths of the linear relationship between the spectra and the iron oxide content.
- (3)
- Soil spectra are affected by many factors, among which iron oxide content and spectra contain both linear and nonlinear relationships. In this paper, by comparing the PLSR linear regression model and two machine learning nonlinear models—RF and XGBoost—the machine learning algorithms can better express the nonlinear relationship and effectively improve the inversion accuracy. Therefore, nonlinear inversion algorithms such as machine learning can be prioritized when using the hyperspectral inversion of iron oxide content in soil.
- (4)
- In the hyperspectral iron oxide inversion model in soil constructed in this study, the of the CR-CC-Boruta-XGBoost model is 0.777 and its RMSEV is 5.464, and the of the FD-CC-Boruta-XGBoost model is 0.806 and its RMSEV is 5.087. The RPDs of the two models are 2.116 and 2.272, both exceeding 2.0, indicating that both models are able to effectively estimate the iron oxide content in soil in the study area. The of the FD-CC-Boruta-XGBoost model was more than 0.8, which was the best inversion model for the present study, and it was able to more accurately invert the iron oxide content in the soil as compared with the other models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, S.; Liu, Y.; Southam, G.; Robertson, L.; Chiu, T.H.; Cross, A.T.; Dixon, K.W.; Stevens, J.C.; Zhong, H.; Chan, T.-S. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. Sci. Total Environ. 2019, 651, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Kirsten, M.; Mikutta, R.; Vogel, C.; Thompson, A.; Mueller, C.W.; Kimaro, D.N.; Bergsma, H.L.; Feger, K.-H.; Kalbitz, K. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics. Sci. Rep. 2021, 11, 5076. [Google Scholar]
- Celi, L.; Prati, M.; Magnacca, G.; Santoro, V.; Martin, M. Role of crystalline iron oxides on stabilization of inositol phosphates in soil. Geoderma 2020, 374, 114442. [Google Scholar] [CrossRef]
- Huang, K.; Yang, Y.; Lu, H.; Hu, S.; Chen, G.; Du, Y.; Liu, T.; Li, X.; Li, F. Transformation kinetics of exogenous nickel in a paddy soil during anoxic-oxic alteration: Roles of organic matter and iron oxides. J. Hazard. Mater. 2023, 452, 131246. [Google Scholar] [CrossRef]
- Jeewani, P.H.; Van Zwieten, L.; Zhu, Z.; Ge, T.; Guggenberger, G.; Luo, Y.; Xu, J. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients. Soil Biol. Biochem. 2021, 160, 108312. [Google Scholar] [CrossRef]
- Jin, M.; Yuan, H.; Liu, B.; Peng, J.; Xu, L.; Yang, D. Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 2020, 12, 5747–5766. [Google Scholar] [CrossRef]
- Wei, L.; Pu, H.; Wang, Z.; Yuan, Z.; Yan, X.; Cao, L. Estimation of soil arsenic content with hyperspectral remote sensing. Sensors 2020, 20, 4056. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, H.; Mao, J.; Jin, Q.; Wang, X.; Li, M. Study on Hyperspectral Inversion Model of Soil Heavy Metals in Typical Lead-Zinc Mining Areas. Spectrosc. Spectr. Anal. 2024, 44, 1740–1750. [Google Scholar]
- Viscarra Rossel, R.; Webster, R. Discrimination of Australian soil horizons and classes from their visible–near infrared spectra. Eur. J. Soil Sci. 2011, 62, 637–647. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Huang, L.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Galvao, L.S.; Pizarro, M.A.n.; Epiphanio, J.C.N. Variations in reflectance of tropical soils: Spectral-chemical composition relationships from AVIRIS data. Remote Sens. Environ. 2001, 75, 245–255. [Google Scholar] [CrossRef]
- He, T.; Wang, J.; Cheng, Y.; Lin, Z. Study on spectral features of soil Fe2O3. Geogr. Geo-Inf. Sci. 2006, 22, 30–34. [Google Scholar]
- Zhao, H.; Gan, S.; Yuan, X.; Hu, L.; Liu, S.; Wang, J. Inversion of soil iron oxide based on multi-scale continuous wavelet decomposition. Acta Opt. Sin. 2022, 42, 209–216. [Google Scholar]
- Ma, C. Inversion of free ferric oxide content in surface soil based on HJ-1A hyperspectral images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 164–170. [Google Scholar]
- Xiong, J.; Zheng, G.; Lin, C. Estimating soil iron content based on reflectance spectra. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2016, 36, 3615–3619. [Google Scholar]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma 2012, 189, 176–185. [Google Scholar] [CrossRef]
- Recena, R.; Fernández-Cabanás, V.M.; Delgado, A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma 2019, 337, 368–374. [Google Scholar] [CrossRef]
- Clingensmith, C.M.; Grunwald, S.; Wani, S.P. Evaluation of calibration subsetting and new chemometric methods on the spectral prediction of key soil properties in a data-limited environment. Eur. J. Soil. Sci. 2019, 70, 107–126. [Google Scholar] [CrossRef]
- Carmon, N.; Ben-Dor, E. An advanced analytical approach for spectral-based modelling of soil properties. Int. J. Emerg. Technol. Adv. Eng. 2017, 7, 90–97. [Google Scholar]
- Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Quantification of different forms of iron from intact soil cores of Paddy fields with vis-NIR spectroscopy. Soil. Sci. Soc. Am. J. 2018, 82, 1497–1511. [Google Scholar] [CrossRef]
- Zhao, H.; Gan, S.; Yuan, X.; Hu, L.; Wang, J.; Liu, S. Application of a fractional order differential to the hyperspectral inversion of soil iron oxide. Agriculture 2022, 12, 1163. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, B.; Chai, L.; Lin, Z.; Feng, H.; Tang, Y.; Tian, R.; Tu, Y.; Zhang, B.; Zou, H. Monitoring of soil heavy metals based on hyperspectral remote sensing: A review. Earth-Sci. Rev. 2024, 254, 104814. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of soil heavy metal content using hyperspectral data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef]
- Shen, L.; Gao, M.; Yan, J.; Li, Z.-L.; Leng, P.; Yang, Q.; Duan, S.-B. Hyperspectral estimation of soil organic matter content using different spectral preprocessing techniques and PLSR method. Remote Sens. 2020, 12, 1206. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, J.; He, W.; Hu, Y.; Zeng, R.; Zamanian, K.; Jia, K.; Zhao, X. Combination of hyperspectral and machine learning to invert soil electrical conductivity. Remote Sens. 2022, 14, 2602. [Google Scholar] [CrossRef]
- Xu, S.; Wang, M.; Shi, X. Hyperspectral imaging for high-resolution mapping of soil carbon fractions in intact paddy soil profiles with multivariate techniques and variable selection. Geoderma 2020, 370, 114358. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.; Li, T. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Environ. Pollut. 2022, 300, 118981. [Google Scholar] [CrossRef]
- Wang, H.; Chu, X.; Chen, P.; Li, J.; Liu, D.; Xu, Y. Partial least squares regression residual extreme learning machine (PLSRR-ELM) calibration algorithm applied in fast determination of gasoline octane number with near-infrared spectroscopy. Fuel 2022, 309, 122224. [Google Scholar] [CrossRef]
- Masoud, M.; El Osta, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Evaluation of groundwater quality for agricultural under different conditions using water quality indices, partial least squares regression models, and GIS approaches. Appl. Water Sci. 2022, 12, 244. [Google Scholar] [CrossRef]
- Tan, K.; Wang, H.; Chen, L.; Du, Q.; Du, P.; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 2020, 382, 120987. [Google Scholar] [CrossRef]
- Bao, Y.; Ustin, S.; Meng, X.; Zhang, X.; Guan, H.; Qi, B.; Liu, H. A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features. Geoderma 2021, 403, 115263. [Google Scholar] [CrossRef]
- Ye, M.; Zhu, L.; Li, X.; Ke, Y.; Huang, Y.; Chen, B.; Yu, H.; Li, H.; Feng, H. Estimation of the soil arsenic concentration using a geographically weighted XGBoost model based on hyperspectral data. Sci. Total Environ. 2023, 858, 159798. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Zhang, X.; Zhu, H. Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sci. Total Environ. 2022, 824, 153766. [Google Scholar] [CrossRef]
- Ma, Q.; Zhao, G.-X. Effects of different land use types on soil nutrients in intensive agricultural region. J. Nat. Resour. 2010, 25, 1834–1844. [Google Scholar]
- Gu, X.; Wang, Y.; Sun, Q.; Yang, G.; Zhang, C. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform. Comput. Electron. Agric. 2019, 167, 105053. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Xu, Z.; Yu, Y.; Zhang, S.; Dai, R. Exploring appropriate preprocessing techniques for hyperspectral soil organic matter content estimation in black soil area. Remote Sens. 2020, 12, 3765. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Zhao, H.; Gan, S.; Yuan, X.; Hu, L.; Wang, J.; Liu, S. Prediction of low Zn concentrations in soil from mountainous areas of central Yunnan Province using a combination of continuous wavelet transform and Boruta algorithm. Int. J. Remote Sens. 2023, 44, 4753–4774. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, X.; Song, X.; Zhang, T.; Duan, W.; Su, J. Hyperspectral estimation of wheat stripe rust using fractional order differential equations and Gaussian process methods. Comput. Electron. Agric. 2023, 206, 107671. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Q.; Nie, C.; Huang, Y.; Wang, J.; Hu, Q.; Ding, X.; Zhou, Y.; Chen, Y. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhang, X.; Wang, Y.; Men, Z.; Liu, H. Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine. Soil Tillage Res. 2022, 219, 105325. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, H.; Jin, Q.; Wang, X.; Miao, Q.; Li, M. Comparative study on the hyperspectral inversion methods for soil heavy metal contents in Hebei lead-zinc tailings reservoir areas. Trans. Chin. Soc. Agric. Eng. 2023, 39, 144–156. [Google Scholar]
- Wang, Y.; Zhang, X.; Sun, W.; Wang, J.; Ding, S.; Liu, S. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data. Sci. Total Environ. 2022, 838, 156129. [Google Scholar] [CrossRef]
- Dai, X.; Wang, Z.; Liu, S.; Yao, Y.; Zhao, R.; Xiang, T.; Fu, T.; Feng, H.; Xiao, L.; Yang, X. Hyperspectral imagery reveals large spatial variations of heavy metal content in agricultural soil-A case study of remote-sensing inversion based on Orbita Hyperspectral Satellites (OHS) imagery. J. Clean. Prod. 2022, 380, 134878. [Google Scholar] [CrossRef]
Model | Sample Size | Predicted Properties | References |
---|---|---|---|
PLSR | 93 | Fe A | [10] |
MLR | 174 | Fe2O3 C | [13] |
SVMR | 135 | Fe2O3 B | [14] |
MLR | 82 | Fe2O3 A | [15] |
PLSR | 160 | Fe A. free iron B. Fe2O3 B | [16] |
PLSR | 95 | free iron B | [17] |
PLSR | 36 | Fe A | [18] |
PLSR | 255 | Fe C | [19] |
PLSR | 146 | Fe2O3 B | [20] |
SVMR | 592 | Fe2O3 A | [21] |
Dataset | Range (g.kg−1) | Mean (g.kg−1) | Standard Deviation (g.kg−1) | Variable Coefficient (%) |
---|---|---|---|---|
Total dataset (n = 135) | 18.293~66.978 | 41.201 | 11.698 | 28.4% |
Calibration dataset (n = 94) | 18.293~66.978 | 40.205 | 11.617 | 28.9% |
Validation dataset (n = 41) | 23.534~64.808 | 43.483 | 10.593 | 23% |
Model | Hyperparameters | Range of Values |
---|---|---|
PLSR | n_components | [1, 20] |
RF | n_estimators | [30, 200] |
max_depth | [2, 16] | |
max_features | [5, 29] | |
min_samples_leaf | [1, 37] | |
min_samples_split | [2, 21] | |
XGBoost | n_estimators | [50, 100] |
subsample | [0.1, 0.7] | |
max_depth | [1, 10] | |
learning_rate | [0.07, 0.49] | |
gamma | [0, 8] |
CC | Wavelength Selection | Quantities | Calibration Set | Validation Set | |||
---|---|---|---|---|---|---|---|
RMSEC (g.kg−1) | RMSEV (g.kg−1) | RPD | |||||
OR | CC-CARS | 27 | 0.687 | 6.002 | 0.375 | 10.490 | 1.265 |
CR | 52 | 0.625 | 6.564 | 0.640 | 7.968 | 1.666 | |
RL | 62 | 0.816 | 4.603 | 0.720 | 7.019 | 1.891 | |
SNV | 68 | 0.680 | 6.066 | 0.404 | 10.243 | 1.296 | |
FD | 53 | 0.510 | 7.508 | 0.223 | 11.694 | 1.135 | |
OR | CC-Boruta | 11 | 0.486 | 7.689 | 0.176 | 12.049 | 1.101 |
CR | 70 | 0.545 | 7.236 | 0.613 | 8.258 | 1.607 | |
RL | 13 | 0.550 | 7.192 | 0.347 | 10.722 | 1.238 | |
SNV | 30 | 0.329 | 8.786 | 0.414 | 10.155 | 1.307 | |
FD | 53 | 0.587 | 6.894 | 0.585 | 8.552 | 1.552 |
CC | Wavelength Selection | Quantities | Calibration Set | Validation Set | |||
---|---|---|---|---|---|---|---|
RMSEC (g.kg−1) | RMSEV (g.kg−1) | RPD | |||||
OR | CC-CARS | 27 | 0.891 | 9.183 | 0.239 | 9.819 | 1.177 |
CR | 52 | 0.921 | 5.228 | 0.481 | 7.663 | 1.508 | |
RL | 62 | 0.882 | 11.556 | 0.260 | 12.016 | 0.926 | |
SNV | 68 | 0.923 | 3.099 | 0.252 | 9.752 | 1.185 | |
FD | 53 | 0.914 | 11.556 | 0.399 | 12.009 | 0.963 | |
OR | CC-Boruta | 11 | 0.900 | 8.646 | 0.351 | 9.397 | 1.230 |
CR | 70 | 0.934 | 2.850 | 0.690 | 6.264 | 1.845 | |
RL | 13 | 0.905 | 11.409 | 0.363 | 11.914 | 0.970 | |
SNV | 30 | 0.925 | 4.608 | 0.591 | 6.856 | 1.686 | |
FD | 53 | 0.943 | 5.547 | 0.699 | 7.086 | 1.631 |
Spectral Type | Wavelength Selection | Quantities | Calibration Set | Validation Set | |||
---|---|---|---|---|---|---|---|
RMSEC (g.kg−1) | RMSEV (g.kg−1) | RPD | |||||
OR | CC-CARS | 27 | 0.896 | 3.724 | 0.433 | 8.707 | 1.328 |
CR | 52 | 0.827 | 4.804 | 0.675 | 6.594 | 1.753 | |
RL | 62 | 0.894 | 3.756 | 0.508 | 8.111 | 1.425 | |
SNV | 68 | 0.965 | 2.166 | 0.528 | 7.944 | 1.455 | |
FD | 53 | 0.916 | 3.347 | 0.457 | 8.519 | 1.357 | |
OR | CC-Boruta | 11 | 0.812 | 5.009 | 0.424 | 8.770 | 1.318 |
CR | 70 | 0.972 | 1.944 | 0.777 | 5.464 | 2.116 | |
RL | 13 | 0.741 | 5.881 | 0.395 | 8.993 | 1.250 | |
SNV | 30 | 0.865 | 4.247 | 0.650 | 6.840 | 1.690 | |
FD | 53 | 0.914 | 3.382 | 0.806 | 5.087 | 2.272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Gan, S.; Yuan, X.; Hu, L.; Hu, J.; Zhao, H.; Lu, C. Research on the Quantitative Inversion of Soil Iron Oxide Content Using Hyperspectral Remote Sensing and Machine Learning Algorithms in the Lufeng Annular Structural Area of Yunnan, China. Sensors 2024, 24, 7039. https://doi.org/10.3390/s24217039
Qi Y, Gan S, Yuan X, Hu L, Hu J, Zhao H, Lu C. Research on the Quantitative Inversion of Soil Iron Oxide Content Using Hyperspectral Remote Sensing and Machine Learning Algorithms in the Lufeng Annular Structural Area of Yunnan, China. Sensors. 2024; 24(21):7039. https://doi.org/10.3390/s24217039
Chicago/Turabian StyleQi, Yingtao, Shu Gan, Xiping Yuan, Lin Hu, Jiankai Hu, Hailong Zhao, and Chengzhuo Lu. 2024. "Research on the Quantitative Inversion of Soil Iron Oxide Content Using Hyperspectral Remote Sensing and Machine Learning Algorithms in the Lufeng Annular Structural Area of Yunnan, China" Sensors 24, no. 21: 7039. https://doi.org/10.3390/s24217039
APA StyleQi, Y., Gan, S., Yuan, X., Hu, L., Hu, J., Zhao, H., & Lu, C. (2024). Research on the Quantitative Inversion of Soil Iron Oxide Content Using Hyperspectral Remote Sensing and Machine Learning Algorithms in the Lufeng Annular Structural Area of Yunnan, China. Sensors, 24(21), 7039. https://doi.org/10.3390/s24217039