Explosion Detection Using Smartphones: Ensemble Learning with the Smartphone High-Explosive Audio Recordings Dataset and the ESC-50 Dataset
Abstract
:1. Introduction
Transfer Learning, YAMNet, and Ensemble Learning
2. Data and Methods
2.1. Smartphone High-Explosive Audio Recordings Dataset (SHAReD)
2.2. Training Data
2.3. Machine Learning Models
3. Results
3.1. D-YAMNet
3.2. Low-Frequency Model
3.3. Ensemble Model
4. Discussion and Conclusions
4.1. Precision-Recall Curves of D-YAMNet and LFM
4.2. Cross-Validation of D-YAMNet and LFM
4.3. Model Performance on Longer-Duration Data
4.4. Baseline Model Comparison
4.5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garces, M.A. Explosion Source Models. In Infrasound Monitoring for Atmospheric Studies; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9781402095078. [Google Scholar]
- Vergoz, J.; Hupe, P.; Listowski, C.; Le Pichon, A.; Garcés, M.A.; Marchetti, E.; Labazuy, P.; Ceranna, L.; Pilger, C.; Gaebler, P.; et al. IMS Observations of Infrasound and Acoustic-Gravity Waves Produced by the January 2022 Volcanic Eruption of Hunga, Tonga: A Global Analysis. Earth Planet. Sci. Lett. 2022, 591, 117639. [Google Scholar] [CrossRef]
- Ceranna, L.; Le Pichon, A.; Green, D.N.; Mialle, P. The Buncefield Explosion: A Benchmark for Infrasound Analysis across Central Europe. Geophys. J. Int. 2009, 177, 491–508. [Google Scholar] [CrossRef]
- Gitterman, Y. Sayarim Infrasound Calibration Explosion: Near-Source and Local Observations and Yield Estimation. In Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, Orlando, FL, USA, 21–23 September 2010; LA-UR-10-0. pp. 708–719. [Google Scholar]
- Fuchs, F.; Schneider, F.M.; Kolínský, P.; Serafin, S.; Bokelmann, G. Rich Observations of Local and Regional Infrasound Phases Made by the AlpArray Seismic Network after Refinery Explosion. Sci. Rep. 2019, 9, 13027. [Google Scholar] [CrossRef] [PubMed]
- Fee, D.; Toney, L.; Kim, K.; Sanderson, R.W.; Iezzi, A.M.; Matoza, R.S.; De Angelis, S.; Jolly, A.D.; Lyons, J.J.; Haney, M.M. Local Explosion Detection and Infrasound Localization by Reverse Time Migration Using 3-D Finite-Difference Wave Propagation. Front. Earth Sci. 2021, 9, 620813. [Google Scholar] [CrossRef]
- Blom, P. Regional Infrasonic Observations from Surface Explosions-Influence of Atmospheric Variations and Realistic Terrain. Geophys. J. Int. 2023, 235, 200–215. [Google Scholar] [CrossRef]
- Kim, K.; Pasyanos, M.E. Seismoacoustic Explosion Yield and Depth Estimation: Insights from the Large Surface Explosion Coupling Experiment. Bull. Seismol. Soc. Am. 2023, 113, 1457–1470. [Google Scholar] [CrossRef]
- Chen, T.; Larmat, C.; Blom, P.; Zeiler, C. Seismoacoustic Analysis of the Large Surface Explosion Coupling Experiment Using a Large-N Seismic Array. Bull. Seismol. Soc. Am. 2023, 113, 1692–1701. [Google Scholar] [CrossRef]
- Takazawa, S.K.; Popenhagen, S.K.; Ocampo Giraldo, L.A.; Cardenas, E.S.; Hix, J.D.; Thompson, S.J.; Chichester, D.L.; Garcés, M.A. A Comparison of Smartphone and Infrasound Microphone Data from a Fuel Air Explosive and a High Explosive. J. Acoust. Soc. Am. 2024, 156, 1509–1523. [Google Scholar] [CrossRef]
- Biancotto, S.; Malizia, A.; Pinto, M.; Contessa, G.M.; Coniglio, A.; D’Arienzo, M. Analysis of a Dirty Bomb Attack in a Large Metropolitan Area: Simulate the Dispersion of Radioactive Materials. J. Instrum. 2020, 15, P02019. [Google Scholar] [CrossRef]
- Rosoff, H.; Von Winterfeldt, D. A Risk and Economic Analysis of Dirty Bomb Attacks on the Ports of Los Angeles and Long Beach. Risk Anal. 2007, 27, 533–546. [Google Scholar] [CrossRef]
- Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A Survey of Mobile Phone Sensing. IEEE Commun. Mag. 2010, 48, 140–150. [Google Scholar] [CrossRef]
- Ganti, R.K.; Ye, F.; Lei, H. Mobile Crowdsensing: Current State and Future Challenges. IEEE Commun. Mag. 2011, 49, 32–39. [Google Scholar] [CrossRef]
- Capponi, A.; Fiandrino, C.; Kantarci, B.; Foschini, L.; Kliazovich, D.; Bouvry, P. A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 2419–2465. [Google Scholar] [CrossRef]
- Popenhagen, S.K.; Bowman, D.C.; Zeiler, C.; Garcés, M.A. Acoustic Waves from a Distant Explosion Recorded on a Continuously Ascending Balloon in the Middle Stratosphere. Geophys. Res. Lett. 2023, 50, e2023GL104031. [Google Scholar] [CrossRef]
- Thandu, S.C.; Chellappan, S.; Yin, Z. Ranging Explosion Events Using Smartphones. In Proceedings of the 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2015, Abu Dhabi, United Arab Emirates, 19–21 October 2015; pp. 492–499. [Google Scholar] [CrossRef]
- Thandu, S.C.; Bharti, P.; Chellappan, S.; Yin, Z. Leveraging Multi-Modal Smartphone Sensors for Ranging and Estimating the Intensity of Explosion Events. Pervasive Mob. Comput. 2017, 40, 185–204. [Google Scholar] [CrossRef]
- Takazawa, S.K. Smartphone High-Explosive Audio Recordings Dataset (SHAReD). Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ROWODP (accessed on 11 June 2024).
- Piczak, K.J. ESC: Dataset for Environmental Sound Classification. In Proceedings of the MM 2015—2015 ACM Multimedia Conference, Brisbane, Australia, 26–30 October 2015; pp. 1015–1018. [Google Scholar] [CrossRef]
- Plakal, M.; Ellis, D. YAMNet. 2019. Available online: https://github.com/tensorflow/models/tree/master/research/audioset/yamnet (accessed on 11 June 2024).
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Brusa, E.; Delprete, C.; Di Maggio, L.G. Deep Transfer Learning for Machine Diagnosis: From Sound and Music Recognition to Bearing Fault Detection. Appl. Sci. 2021, 11, 11663. [Google Scholar] [CrossRef]
- Tsalera, E.; Papadakis, A.; Samarakou, M. Comparison of Pre-Trained Cnns for Audio Classification Using Transfer Learning. J. Sens. Actuator Netw. 2021, 10, 72. [Google Scholar] [CrossRef]
- Ashurov, A.; Zhou, Y.; Shi, L.; Zhao, Y.; Liu, H. Environmental Sound Classification Based on Transfer-Learning Techniques with Multiple Optimizers. Electronics 2022, 11, 2279. [Google Scholar] [CrossRef]
- Hyun, S.H. Sound-Event Detection of Water-Usage Activities Using Transfer Learning. Sensors 2023, 24, 22. [Google Scholar] [CrossRef]
- Gemmeke, J.F.; Ellis, D.P.W.; Freedman, D.; Jansen, A.; Lawrence, W.; Moore, R.C.; Plakal, M.; Ritter, M. Audio Set: An Ontology and Human-Labeled Dataset for Audio Events. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 776–780. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Chachada, S.; Kuo, C.C.J. Environmental Sound Recognition: A Survey. In Proceedings of the 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2013, Kaohsiung, Taiwan, 29 October–1 November 2013. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Garcés, M.A.; Bowman, D.; Zeiler, C.; Christe, A.; Yoshiyama, T.; Williams, B.; Colet, M.; Takazawa, S.; Popenhagen, S. Skyfall: Signal Fusion from a Smartphone Falling from the Stratosphere. Signals 2022, 3, 209–234. [Google Scholar] [CrossRef]
- Bird, E.J.; Bowman, D.C.; Seastrand, D.R.; Wright, M.A.; Lees, J.M.; Dannemann Dugick, F.K. Monitoring Changes in Human Activity during the COVID-19 Shutdown in Las Vegas Using Infrasound Microbarometers. J. Acoust. Soc. Am. 2021, 149, 1796–1802. [Google Scholar] [CrossRef]
- Wynn, N.R.; Dannemann Dugick, F.K. Modeling and Characterizing Urban Infrasonic and Low-Frequency Noise in the Las Vegas, NV Region. J. Acoust. Soc. Am. 2023, 154, 1439–1447. [Google Scholar] [CrossRef]
- Takazawa, S.K.; Garces, M.A.; Ocampo Giraldo, L.; Hix, J.; Chichester, D.; Zeiler, C. Explosion Detection with Transfer Learning via YAMNet and the ESC-50 Dataset. In Proceedings of the University Program Review (UPR) 2022 Meeting for Defense Nuclear Nonproliferation Research and Development Program, Ann Arbor, MI, USA, 7–9 June 2022. [Google Scholar]
- Piczak, K.J. Environmental Sound Classification with Convolutional Neural Networks. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, MLSP, Boston, MA, USA, 17–20 September 2015. [Google Scholar]
- Huzaifah, M. Comparison of Time-Frequency Representations for Environmental Sound Classification Using Convolutional Neural Networks. arXiv 2017, arXiv:1706.07156. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D Convolutional Neural Networks and Applications: A Survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Bueno, A.; Diaz-Moreno, A.; Álvarez, I.; De la Torre, A.; Lamb, O.D.; Zuccarello, L.; De Angelis, S. VINEDA—Volcanic INfrasound Explosions Detector Algorithm. Front. Earth Sci. 2019, 7, 335. [Google Scholar] [CrossRef]
- Witsil, A.; Fee, D.; Dickey, J.; Peña, R.; Waxler, R.; Blom, P. Detecting Large Explosions with Machine Learning Models Trained on Synthetic Infrasound Data. Geophys. Res. Lett. 2022, 49, e2022GL097785. [Google Scholar] [CrossRef]
- Arrowsmith, S.J.; Taylor, S.R. Multivariate Acoustic Detection of Small Explosions Using Fisher’s Combined Probability Test. J. Acoust. Soc. Am. 2013, 133, EL168–EL173. [Google Scholar] [CrossRef]
- Carmichael, J.; Nemzek, R.; Symons, N.; Begnaud, M. A Method to Fuse Multiphysics Waveforms and Improve Predictive Explosion Detection: Theory, Experiment and Performance. Geophys. J. Int. 2020, 222, 1195–1212. [Google Scholar] [CrossRef]
- The Pandas Development Team Pandas-Dev/Pandas: Pandas 2024. Available online: https://zenodo.org/search?q=conceptrecid%3A%223509134%22&l=list&p=1&s=10&sort=-version (accessed on 11 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takazawa, S.K.; Popenhagen, S.K.; Ocampo Giraldo, L.A.; Hix, J.D.; Thompson, S.J.; Chichester, D.L.; Zeiler, C.P.; Garcés, M.A. Explosion Detection Using Smartphones: Ensemble Learning with the Smartphone High-Explosive Audio Recordings Dataset and the ESC-50 Dataset. Sensors 2024, 24, 6688. https://doi.org/10.3390/s24206688
Takazawa SK, Popenhagen SK, Ocampo Giraldo LA, Hix JD, Thompson SJ, Chichester DL, Zeiler CP, Garcés MA. Explosion Detection Using Smartphones: Ensemble Learning with the Smartphone High-Explosive Audio Recordings Dataset and the ESC-50 Dataset. Sensors. 2024; 24(20):6688. https://doi.org/10.3390/s24206688
Chicago/Turabian StyleTakazawa, Samuel K., Sarah K. Popenhagen, Luis A. Ocampo Giraldo, Jay D. Hix, Scott J. Thompson, David L. Chichester, Cleat P. Zeiler, and Milton A. Garcés. 2024. "Explosion Detection Using Smartphones: Ensemble Learning with the Smartphone High-Explosive Audio Recordings Dataset and the ESC-50 Dataset" Sensors 24, no. 20: 6688. https://doi.org/10.3390/s24206688
APA StyleTakazawa, S. K., Popenhagen, S. K., Ocampo Giraldo, L. A., Hix, J. D., Thompson, S. J., Chichester, D. L., Zeiler, C. P., & Garcés, M. A. (2024). Explosion Detection Using Smartphones: Ensemble Learning with the Smartphone High-Explosive Audio Recordings Dataset and the ESC-50 Dataset. Sensors, 24(20), 6688. https://doi.org/10.3390/s24206688