Methods for Evaluating Tibial Accelerations and Spatiotemporal Gait Parameters during Unsupervised Outdoor Movement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
Sensor Settings and Data Collection Procedures
2.2. Data Processing
2.2.1. Data Extraction and Synchronization
2.2.2. Orientation of IMU in Tibial Reference Frame
2.2.3. Validation of IMU Orientation
2.2.4. Tibial Accelerations and Spatiotemporal Gait Characteristics during Movement
2.2.5. Terrain Features
3. Results
3.1. Validation of IMU Orientation Relative to Tibia Reference Frame
3.2. Speed
3.3. Other Outcomes
3.4. Data Summary
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Matijevich, E.S.; Scott, L.R.; Volgyesi, P.; Derry, K.H.; Zelik, K.E. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running. Hum. Mov. Sci. 2020, 74, 102690. [Google Scholar] [CrossRef] [PubMed]
- Elstub, L.; Nurse, C.; Grohowski, L.; Volgyesi, P.; Wolf, D.; Zelik, K. Tibial bone forces can be monitored using shoe-worn wearable sensors during running. J. Sports Sci. 2022, 40, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Edwards, N.A.; Talarico, M.K.; Chaudhari, A.; Mansfield, C.J.; Oñate, J. Use of accelerometers and inertial measurement units to quantify movement of tactical athletes: A systematic review. Appl. Ergon. 2023, 109, 103991. [Google Scholar] [CrossRef] [PubMed]
- Giandolini, M.; Horvais, N.; Rossi, J.; Millet, G.Y.; Samozino, P.; Morin, J.-B. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. J. Biomech. 2016, 49, 1765–1771. [Google Scholar] [CrossRef]
- James, K.A.; Corrigan, P.; Lanois, C.; Huang, C.-H.; Davis, I.S.; Stefanik, J.J. Association of tibial acceleration during walking to pain and impact loading in adults with knee osteoarthritis. Clin. Biomech. 2023, 109, 106097. [Google Scholar] [CrossRef]
- Garcia, M.C.; Gust, G.; Bazett-Jones, D.M. Tibial acceleration and shock attenuation while running over different surfaces in a trail environment. J. Sci. Med. Sport 2021, 24, 1161–1165. [Google Scholar] [CrossRef]
- Sheerin, K.R.; Besier, T.F.; Reid, D. The influence of running velocity on resultant tibial acceleration in runners. Sports Biomech. 2020, 19, 750–760. [Google Scholar] [CrossRef]
- APDM. MobilityLabUserGuide; APDM: Portland, OR, USA, 2016. [Google Scholar]
- Xsens Technologies. MTw Awinda User Manual; Xsens Technologies: Enschede, The Netherlands, 2018. [Google Scholar]
- Favre, J.; Aissaoui, R.; Jolles, B.; de Guise, J.; Aminian, K. Functional calibration procedure for 3D knee joint angle description using inertial sensors. J. Biomech. 2009, 42, 2330–2335. [Google Scholar] [CrossRef]
- McGinnis, R.S.; Cain, S.M.; Tao, S.; Whiteside, D.; Goulet, G.C.; Gardner, E.C.; Bedi, A.; Perkins, N.C. Accuracy of femur angles estimated by IMUs during clinical procedures used to diagnose femoroacetabular impingement. IEEE Trans. Biomed. Eng. 2015, 62, 1503–1513. [Google Scholar] [CrossRef]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef]
- Rouhani, H.; Favre, J.; Crevoisier, X.; Aminian, K. Measurement of multi-segment foot joint angles during gait using a wearable system. J. Biomech. Eng. 2012, 134, 061006. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Cereatti, A.; Cappozzo, A. Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 2008, 28, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Cain, S.M.; McGinnis, R.S.; Davidson, S.P.; Vitali, R.V.; Perkins, N.C.; McLean, S.G. Quantifying performance and effects of load carriage during a challenging balancing task using an array of wireless inertial sensors. Gait Posture 2016, 43, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Hafer, J.F.; Provenzano, S.G.; Kern, K.L.; Agresta, C.E.; Grant, J.A.; Zernicke, R.F. Measuring markers of aging and knee osteoarthritis gait using inertial measurement units. J. Biomech. 2019, 99, 109567. [Google Scholar] [CrossRef] [PubMed]
- Donahue, S.R.; Hahn, M.E. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment. Sci. Rep. 2023, 13, 2339. [Google Scholar] [CrossRef]
- Seay, J.F.; Fellin, R.E.; Sauer, S.G.; Frykman, P.N.; Bensel, C.K. Lower extremity biomechanical changes associated with symmetrical torso loading during simulated marching. Mil. Med. 2014, 179, 85–91. [Google Scholar] [CrossRef]
- Birrell, S.A.; Haslam, R.A. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 2009, 52, 1298–1304. [Google Scholar] [CrossRef]
- Silder, A.; Delp, S.L.; Besier, T. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage. J. Biomech. 2013, 46, 2522–2528. [Google Scholar] [CrossRef]
- Johnson, C.D.; Sara, L.K.; Bradach, M.M.; Mullineaux, D.R.; Foulis, S.A.; Hughes, J.M.; Davis, I.S.; Johnson, C.D.; Sara, L.K.; Bradach, M.M.; et al. Relationships between tibial accelerations and ground reaction forces during walking with load carriage. J. Biomech. 2023, 156, 111693. [Google Scholar] [CrossRef]
- Sturdy, J.T.; Rizeq, H.N.; Silder, A.; Sessoms, P.H.; Silverman, A.K. Walking slope and heavy backpack loads affect torso muscle activity and kinematics. J. Electromyogr. Kinesiol. 2023, 70, 102769. [Google Scholar] [CrossRef]
- Harman, E.; Frykman, P.; Tharion, W.; Mello, R.; Obusek, J.; Kirk, K. Physiological, Biomechanical, and Maximal Performance Comparisons of Female Soldiers Carrying Loads Using Prototype U.S. MARINE Corps Modular Lightweight Load-Carrying Equipment (MOLLE) with Interceptor Body Armor and U.S. Army All-Purpose Lightweight Ind, Natick, MA, U.S. Army Research Institute of Environmental Medicine; Defence Technical Information Center (DTIC): Fort Belvoir, VA, USA, 1999; pp. 1–48. [Google Scholar]
- Vickery-Howe, D.M.; Clarke, A.C.; Drain, J.R.; Dascombe, B.J.; Middleton, K.J. No physiological or biomechanical sex-by-load interactions during treadmill-based load carriage. Ergonomics 2020, 63, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Tay, C.S.; Lee, J.K.; Teo, Y.S.; Foo, P.Q.; Tan, P.M.; Kong, P.W. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage. Gait Posture 2016, 43, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Frame, J.; Ozimek, E.; Leib, D.; Dugan, E.L. Influence of Fatigue and Load Carriage on Mechanical Loading During Walking. Mil. Med. 2012, 177, 152–156. Available online: https://academic.oup.com/milmed/article/177/2/152/4283640 (accessed on 1 November 2023). [CrossRef] [PubMed]
- Bloch, A.E.; Steckenrider, J.J.; Zifchock, R.A.; Freisinger, G.M.; Bode, V.G.; Elkin-Frankston, S. Effect of Fatigue on Movement Patterns During a Loaded Ruck March. Mil. Med. 2023, 189, e15–e20. [Google Scholar] [CrossRef] [PubMed]
- Paulich, M.; Schepers, M.; Rudigkeit, N.; Bellusci, G. Xsens MTw Awinda: Miniature Wireless Inertial-Magnetic Motion Tracker for Highly Accurate 3D Kinematic Applications. Available online: www.xsens.com (accessed on 1 November 2023).
- Murtagh, E.M.; Mair, J.L.; Aguiar, E.; Tudor-Locke, C.; Murphy, M.H. Outdoor Walking Speeds of Apparently Healthy Adults: A Systematic Review and Meta-analysis. Sports Med. 2020, 51, 125–141. [Google Scholar] [CrossRef]
- de Ruiter, C.J.; van Daal, S.; van Dieën, J.H. Individual optimal step frequency during outdoor running. Eur. J. Sport Sci. 2019, 20, 182–190. [Google Scholar] [CrossRef]
- SANDAG, F.C.O.S.D. Public/SD_Merged_DEM. Available online: https://gis.sandag.org/sdgis/rest/services/Elevation/SanDiego_Regional_DEM/ImageServer (accessed on 24 September 2024).
- Richmond, P.W.; Potter, A.W.; Looney, D.P.; Santee, W.R. Terrain coefficients for predicting energy costs of walking over snow. Appl. Ergon. 2018, 74, 48–54. [Google Scholar] [CrossRef]
- Richmond, P.W.; Potter, A.W.; Santee, W.R. Terrain factors for predicting walking and load carriage energy costs: Review and Refinement. J. Sport Hum. Perform. 2015, 3, 1–26. [Google Scholar] [CrossRef]
- Looney, D.P.; Potter, A.W.; Pryor, J.L.; Bremner, P.E.; Chalmers, C.R.; Mcclung, H.L.; Welles, A.P.; Santee, W.R. Metabolic Costs of Standing and Walking in Healthy Military-Age Adults: A Meta-regression. Med. Sci. Sports Exerc. 2019, 51, 346–351. [Google Scholar] [CrossRef]
- Looney, D.P.; Santee, W.R.; Hansen, E.O.; Bonventre, P.J.; Chalmers, C.R.; Potter, A.W. Estimating Energy Expenditure during Level, Uphill, and Downhill Walking. Med. Sci. Sports Exerc. 2019, 51, 1954–1960. [Google Scholar] [CrossRef]
- Looney, D.P.; Lavoie, E.M.; Vangala, S.V.; Holden, L.D.; Figueiredo, P.S.; Friedl, K.E.; Frykman, P.N.; Hancock, J.W.; Montain, S.J.; Pryor, J.L.; et al. Modeling the Metabolic Costs of Heavy Military Backpacking. Med. Sci. Sports Exerc. 2021, 54, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Schertzer, E.; Riemer, R. Metabolic rate of carrying added mass: A function of walking speed, carried mass and mass location. Appl. Ergon. 2014, 45, 1422–1432. [Google Scholar] [CrossRef] [PubMed]
- Soule, R.G.; Goldman, R.F. Energy cost of loads carried on the head, hands, or feet. J. Appl. Physiol. 1969, 27, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Vanwanseele, B.; De Beéck, T.O.; Schütte, K.; Davis, J. Accelerometer Based Data Can Provide a Better Estimate of Cumulative Load During Running Compared to GPS Based Parameters. Front. Sports Act. Living 2020, 2, 575596. [Google Scholar] [CrossRef]
- Johnson, C.D.; Outerleys, J.; Jamison, S.T.; Tenforde, A.S.; Ruder, M.; Davis, I.S. Comparison of Tibial Shock during Treadmill and Real-World Running. Med. Sci. Sports Exerc. 2020, 52, 1557–1562. [Google Scholar] [CrossRef]
- Kloss, E.B.; Givens, A.; Palombo, L.; Bernards, J.; Niederberger, B.; Bennett, D.W.; Kelly, K.R. Validation of Polar Grit X Pro for Estimating Energy Expenditure during Military Field Training: A Pilot Study. J. Sports Sci. Med. 2023, 22, 658–666. [Google Scholar] [CrossRef]
- U. S. Army Public Health Center. 2017 Health Of The Force Report; U.S. Army Public Health Center: Aberdeen Proving Ground, MD, USA, 2018. [Google Scholar]
- Silder, A.; Besier, T.; Delp, S.L. Running with a load increases leg stiffness. J. Biomech. 2015, 48, 1003–1008. [Google Scholar] [CrossRef]
- Dembia, C.L.; Silder, A.; Uchida, T.K.; Hicks, J.L.; Delp, S.L. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads. PLoS ONE 2017, 12, e0180320. [Google Scholar] [CrossRef]
- Quesada, P.M.; Mengelkoch, L.J.; Hale, R.C.; Simon, S.R. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics 2000, 43, 293–309. [Google Scholar] [CrossRef]
- Matijevich, E.S.; Branscombe, L.M.; Scott, L.R.; Zelik, K.E. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PLoS ONE 2019, 14, e0210000. [Google Scholar] [CrossRef]
- Milner, C.E.; Foch, E.; Gonzales, J.M.; Petersen, D. Biomechanics associated with tibial stress fracture in runners: A systematic review and meta-analysis. J. Sport Health Sci. 2023, 12, 333–342. [Google Scholar] [CrossRef]
- Mercer, J.; Bates, B.; Dufek, J.; Hreljac, A. Characteristics of shock attenuation during fatigued running. J. Sports Sci. 2003, 21, 911–919. [Google Scholar] [CrossRef]
- GPS.gov. Selective Availability. Available online: https://www.gps.gov/systems/gps/modernization/sa/ (accessed on 1 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silder, A.; Wong, E.J.; Green, B.; McCloughan, N.H.; Hoch, M.C. Methods for Evaluating Tibial Accelerations and Spatiotemporal Gait Parameters during Unsupervised Outdoor Movement. Sensors 2024, 24, 6667. https://doi.org/10.3390/s24206667
Silder A, Wong EJ, Green B, McCloughan NH, Hoch MC. Methods for Evaluating Tibial Accelerations and Spatiotemporal Gait Parameters during Unsupervised Outdoor Movement. Sensors. 2024; 24(20):6667. https://doi.org/10.3390/s24206667
Chicago/Turabian StyleSilder, Amy, Ethan J. Wong, Brian Green, Nicole H. McCloughan, and Matthew C. Hoch. 2024. "Methods for Evaluating Tibial Accelerations and Spatiotemporal Gait Parameters during Unsupervised Outdoor Movement" Sensors 24, no. 20: 6667. https://doi.org/10.3390/s24206667
APA StyleSilder, A., Wong, E. J., Green, B., McCloughan, N. H., & Hoch, M. C. (2024). Methods for Evaluating Tibial Accelerations and Spatiotemporal Gait Parameters during Unsupervised Outdoor Movement. Sensors, 24(20), 6667. https://doi.org/10.3390/s24206667