Design of a Capacitive Tactile Sensor Array System for Human–Computer Interaction
Abstract
:1. Introduction
2. Sensor Fabrication
3. Design of Data Acquisition System
- (1)
- The Arduino controller and the capacitance measurement device were connected to the computer via USB cables. This setup allowed for data transfer and control signals between the PC and the hardware components.
- (2)
- The D2~D5 pins of the Arduino controller were connected to the four binary control pins of one analog switch. The D8~D11 pins of the Arduino controller were connected to the four binary control pins of another analog switch. It became possible to enable control over the input signals.
- (3)
- The two inputs of the capacitance measurement module were connected to the outputs of both analog switches. The micro-capacitive array was connected to the 16 input channels of the two analog switches using flexible ribbon cables.
4. Sensor Data Processing
4.1. Pre-Processing
- (1)
- Data alignment:
- (2)
- Abnormal data detection:
4.2. Acquisition of Capacitance Value Sequences
4.3. Trajectory Visualization
5. Experiment of Finger-Sliding Motion Recognition Based on ACGAN
5.1. ACGAN
5.2. Datasets
5.3. Model Construction
5.4. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, J.; Zhu, T.; Liang, Y.; Liu, Z.; Wang, R.; Zhang, X.; Wang, H.-X. Fabrication of capacitive pressure sensor using single crystal diamond cantilever beam. Sci. Rep. 2019, 9, 4699. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Chen, W.; Liang, B.; Liu, C.; Yang, L.; Lu, D.; Mo, Z.; Zhu, H.; Tang, Z.; Gui, X. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 2018, 10, 12816–12823. [Google Scholar] [CrossRef] [PubMed]
- Kou, H.; Zhang, L.; Tan, Q.; Liu, G.; Dong, H.; Zhang, W.; Xiong, J. Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 2019, 9, 3916. [Google Scholar] [CrossRef] [PubMed]
- Atalay, O.; Atalay, A.; Gafford, J.; Walsh, C. A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer. Adv. Mater. Technol. 2018, 3, 1700237. [Google Scholar] [CrossRef]
- Ruth, S.R.A.; Beker, L.; Tran, H.; Feig, V.R.; Matsuhisa, N.; Bao, Z. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv. Funct. Mater. 2020, 30, 1903100. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z.; Li, C.; Xie, K.; Zhu, P.; Shao, B.; Zhang, J.; Yang, J.; Zhang, J.; Wang, Q. Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv. Sci. 2020, 7, 2000348. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, H.; Li, J.-A.; Zhang, S.; Li, H.; Ma, Z.; Xin, M.; Yan, K.; Cheng, W.; He, D. High-performance flexible capacitive proximity and pressure sensors with spiral electrodes for continuous human–machine interaction. ACS Mater. Lett. 2022, 4, 2261–2272. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, R.; Tong, Y.; Zhao, X.; Zhang, T.; Wang, X.; Tang, Q.; Liu, Y. Shape-designable and reconfigurable all-paper sensor through the sandwich architecture for pressure/proximity detection. ACS Appl. Mater. Interfaces 2021, 13, 49085–49095. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, H.O.; Forouhi, S.; Ghafar-Zadeh, E. A High Dynamic Range Dual 8× 16 Capacitive Sensor Array for Life Science Applications. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, S.; Shi, Y.; Fu, Z.; Zhou, B. A flexible highly sensitive capacitive pressure sensor. Sens. Actuators A Phys. 2021, 324, 112629. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Khan, M.U.; Bae, J. Inner egg shell membrane based bio-compatible capacitive and piezoelectric function dominant self-powered pressure sensor array for smart electronic applications. RSC Adv. 2020, 10, 29214–29227. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhao, Y.; Wang, Q. A flexible iontronic capacitive sensing array for hand gesture recognition using deep convolutional neural networks. Soft Robot. 2023, 10, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Barrett, G.; Omote, R. Projected-capacitive touch technology. Inf. Disp. 2010, 26, 16–21. [Google Scholar] [CrossRef]
- Grosse-Puppendahl, T.; Holz, C.; Cohn, G.; Wimmer, R.; Bechtold, O.; Hodges, S.; Reynolds, M.S.; Smith, J.R. Finding common ground: A survey of capacitive sensing in human-computer interaction. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 3293–3315. [Google Scholar]
- Kawahara, Y.; Hodges, S.; Cook, B.S.; Zhang, C.; Abowd, G.D. Instant inkjet circuits: Lab-based inkjet printing to support rapid prototyping of UbiComp devices. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013; pp. 363–372. [Google Scholar]
- Nittala, A.S.; Withana, A.; Pourjafarian, N.; Steimle, J. Multi-touch skin: A thin and flexible multi-touch sensor for on-skin input. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12. [Google Scholar]
- Kim, H.-K.; Lee, S.; Yun, K.-S. Capacitive tactile sensor array for touch screen application. Sens. Actuators A Phys. 2011, 165, 2–7. [Google Scholar] [CrossRef]
- Mu, Y.; Cheng, J.; Wu, X.; Yang, W.; Jin, N.; Xing, Y.; Liu, W.; Yue, C.; Wang, H.; Wu, J. All-printed flexible capacitive array tactile force sensors with tunable sensitivity and low crosstalk for micro motion detection. Sens. Actuators A Phys. 2023, 356, 114337. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv, 2014; arXiv:1411.1784. [Google Scholar]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier gans. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
Components | Specifications |
---|---|
Operating system | Ubuntu 22.0.4 |
Integrated development environment (IDE) | PyCharm 2022.1.1 |
Programming language | Python 3.7 |
Deep learning framework | PyTorch |
CPU | Intel i9-13900K |
Memory | 128 GB |
GPU | NVIDIA GeForce RTX 4090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, F.; Jia, Z.; Wu, C.; Lu, X.; Li, Z. Design of a Capacitive Tactile Sensor Array System for Human–Computer Interaction. Sensors 2024, 24, 6629. https://doi.org/10.3390/s24206629
Fei F, Jia Z, Wu C, Lu X, Li Z. Design of a Capacitive Tactile Sensor Array System for Human–Computer Interaction. Sensors. 2024; 24(20):6629. https://doi.org/10.3390/s24206629
Chicago/Turabian StyleFei, Fei, Zhenkun Jia, Changcheng Wu, Xiong Lu, and Zhi Li. 2024. "Design of a Capacitive Tactile Sensor Array System for Human–Computer Interaction" Sensors 24, no. 20: 6629. https://doi.org/10.3390/s24206629
APA StyleFei, F., Jia, Z., Wu, C., Lu, X., & Li, Z. (2024). Design of a Capacitive Tactile Sensor Array System for Human–Computer Interaction. Sensors, 24(20), 6629. https://doi.org/10.3390/s24206629