Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection
Abstract
1. Introduction
2. Principle of Nanozymes in Antioxidant Detection
2.1. POD Nanozymes for Antioxidant Detection
2.2. OXD Nanozymes for Antioxidant Detection
2.3. Laccase-like Nanozymes for Antioxidant Detection

2.4. Multi-Enzyme Nanozymes for Antioxidant Detection
3. Application of Nanozymes in Antioxidant Detection
3.1. Nanozymes-Based Densing Dethods for Dntioxidant Detection
3.1.1. Colorimetric Methods for Antioxidants Determination

3.1.2. Fluorescence Method for Antioxidants Determination

3.1.3. Electrochemical Method for Antioxidants Determination
3.1.4. Other Methods for Antioxidants Determination
| Enzyme | Detection Method | Detection Object | Detection Range (μmol/L) | LOD (μmol/L) | Reference |
|---|---|---|---|---|---|
| POD | - | AA | 8~64 | 0.77 | [90] |
| POD | colorimetry | AA, Cys, GSH | 0.01~50,000 | Fe-based nanozyme: AA (0.00517), GSH (0.00628) Cu-based nanozyme: AA (0.00377), Cys (0.00340) Zn-based nanozyme: AA (0.0063), GSH (0.00712) | [89] |
| POD | colorimetry | AA, Cys | AA: 0.5~120, Cys: 0.1~20 | AA: 0.15, Cys: 0.06 | [129] |
| POD | colorimetry | AA, GA, CA | AA: 0.5~50, GA: 40~600, CA: 400~1800 | AA: 0.23, GA: 0.11, CA: 0.20 | [107] |
| POD | colorimetry | Vitamin C, GSH, CYS, etc. | Vitamin C: 2~32, GSH: 4~20, Cys: 0~16, CA: 1~20, GA: 2~12 | Vitamin C: 0.158, GSH: 124, CYS: 116.3, CA: 0.259, GA: 0.1885 | [126] |
| POD | colorimetry | TAC | absorptiometry: 0~60, fluorescence spectrophotometry: 0~60 | absorptiometry: 1.3, fluorescence spectrophotometry: 0.35 | [124] |
| POD | colorimetry | H2O2, AA, ferulic acid (FA), tannin acid (TA), GA | H2O2: 5 × 104~4 × 106, AA: 10~80, FA: 10~100, TA: 5~60, GA: 5~40 | H2O2: 16.0, AA: 8.7, FA: 8.3, TA: 2.7, GA: 2.4 | [130] |
| POD | colorimetry | glucose | 0.025~0.5 | 1.5 | [131] |
| POD | colorimetry | AA | 300~900 | 59.4 | [110] |
| POD | colorimetry, fluorimetry | H2O2 | colorimetry: 1~70, fluorimetry: 5~250 | colorimetry: 0.78, fluorimetry: 0.86 | [125] |
| POD | colorimetry | AA | 2~120 | 0.41 | [132] |
| POD | colorimetry | AA | 1 × 104~4.5 × 104 | 6130.0 | [133] |
| POD | colorimetry | TAC | 5~40 | 1.40 | [134] |
| POD | colorimetry | AA, 2,4-DP, adrenaline | AA: 0~25, 2,4-DP: 3.1~613.5, adrenaline: 1.09~272.93 | AA: 0.29, 2,4-DP: 0.76, adrenaline: 0.7 | [101] |
| POD | fluorimetry | H2O2, AA, L-Cys, etc. | H2O2: 0~4000, L-Cys: 0~4000, GSH: 0~1000, etc. | H2O2: 29.0, AA: 4.2 (spectroscopy), L-Cys: 680.0, GSH: 76.0, AA: 68.0 (fluorimetry) | [135] |
| POD | colorimetry | H2O2, glucose, AA | H2O2: 20~200, glucose: 10~100, AA: 8~80 | H2O2: 15, glucose: 10, AA: 8 | [136] |
| POD | colorimetry, fluorimetry | H2O2 | 0~60 | colorimetry: 1.3, fluorimetry: 0.35 | [124] |
| POD | colorimetry | AA, H2O2 | AA: 1.0~20.0, H2O2: 100~1000 | AA: 0.94, H2O2: 45.3 | [137] |
| POD | colorimetry | AA, Cys, GSH | AA: 1~80, Cys: 1~80, GSH: 1~80 | AA: 0.14, Cys: 0.18, GSH: 0.21 | [108] |
| POD | colorimetry | H2O2, glucose, AA, etc. | H2O2: 20~1000, glucose: 15~500, AA: 1~55, etc. | H2O2: 6.5, glucose: 3, AA: 0.35, GA: 0.75, TA: 0.048 | [138] |
| POD | colorimetry | AA, GSH, TA, etc. | 0.01~50,000 | 0.01 | [89] |
| POD | colorimetry | GLY, GSH, CA, etc. | 0.1~10 | 0.1 | [139] |
| POD | colorimetry | AA, Cys | 0.5~120 | 0.06 (Cys), 0.15 (AA) | [129] |
| POD | colorimetry | GSH, AA, Cys, etc. | 0.01~50 | 10 | [105] |
| POD | colorimetry | Cys, UA, polyphenols, etc. | 0.01~10.0 | 0.000116(AA), 0.000112 (Cys), 0.000143 (DA), etc. | [127] |
| POD | colorimetry | AA | 10.0~125.0 | 0.406 | [140] |
| POD | colorimetry | hydroperoxide | 10~10,000 | 1.55 | [141] |
| Enzyme | Detection Method | Detection Object | Detection Range (μmol/L) | LOD (μmol/L) | Reference |
|---|---|---|---|---|---|
| OXD | colorimetry | TAC | 1.25~10 | 0.00825 | [104] |
| OXD | colorimetry | GSH, AA, Cys, etc. | - | 0.01 | [105] |
| OXD | colorimetry | AA, GSH, Cys | AA: 1~30, GSH: 1~30, Cys: 2~10 | AA: 1.53, GSH: 2.00, Cys: 0.97 | [94] |
| OXD | colorimetry | TAC | 1~30 | 1.17 | [93] |
| OXD | colorimetry | TH, AA, GSH | TH = 7: 0.1~60, TH > 7: 0.005~1, AA: 3~50, GSH: 1~40, etc. | - | [95] |
| OXD | colorimetry | AA, 2,4-DP, adrenaline | AA: 0~25, 2,4-DP: 3.1~122.7 and 122.7~613.5, adrenaline: 1.09~109.2 and 109.2~272.93 | AA: 0.29, 2,4-DP: 0.76, adrenaline: 0.70 | [101] |
| OXD | colorimetry, fluorimetry | GA | colorimetry: 0~60, fluorimetry: 0~60 | colorimetry: 1.3, fluorimetry: 0.35 | [101] |
| OXD | colorimetry | TAC | - | - | [96] |
| OXD | colorimetry | AA, GSH, homocysteine | AA: 1~90, GSH, homocysteine: 3~70, 2.5~50 | AA: 0.2, GSH and homocysteine: 0.8 and 0.9 | [142] |
| OXD | colorimetry | AA, Cys, GSH | AA: 3.0~25, Cys: 3.0~33, GSH: 3.0~35 | AA: 0.04, Cys: 0.047, GSH: 0.067 | [143] |
| OXD | colorimetry | GA, 4-hydroxycinnamic acid, anthocyanidin, etc. | 5~100 | 5 | [144] |
| OXD | electrochemical method | phenol | 0.01~0.2 | 0.00294 | [145] |
| Enzyme | Detection Method | Detection Object | Detection Range (μmol/L) | LOD (μmol/L) | Reference |
|---|---|---|---|---|---|
| laccase | colorimetry | CC | 5.0~70.0 | 2 | [146] |
| laccase | electrochemical method | CC | 0.036~2.5 | 0.032 | [147] |
| laccase | electrochemical method | polyphenol compounds | 1~250 | 0.83 | [148] |
| laccase | electrochemical method | total Phenolic Compounds | 0.1~500 | 0.05 | [149] |
| laccase | electrochemical method | phenolic compounds | 0.1~500 | 0.03 | [150] |
| laccase | electrochemical method | polyphenol | 1~500 | 0.156 (P-guaiacol) | [151] |
| laccase | colorimetry | CC, HQ | 1~1000 (CC), HQ: 0.05~100 | 0.35 (CC), HQ: 0.04 | [102] |
| laccase | electrochemical method | 2-aminophenol, catechol, etc. | 50~1000 | - | [152] |
| laccase | colorimetry | 2,4-dichlorophenol, phenol, CC, etc. | 0.1~100 | 0.033 | [98] |
| laccase | electrochemical method | polyphenol | 0.01~10 | 0.081 | [153] |
| laccase | colorimetry | 2,4-dichlorophenol, phenol, CC, etc. | 0.1~2000 | 34,000 (2,4-dichlorophenol) | [154] |
| laccase | fluorimetry | GA | - | 7.4 | [155] |
| laccase | electrochemical method | CC | 3.0~15 | 0.91 | [156] |
| laccase | electrochemical method, optics method | polyphenol, including GA, CA, etc. | 0.1~100 or higher | 0.0001~ 0.7 | [157] |
| laccase | electrochemical method | RA | 0.91~12.1 | 0.233 | [158] |
| laccase | colorimetry, combined with smart phone platform | AA | AA: 0~25, 2,4-dichlorophenol: 3.1~613.5, adrenaline 1.09~272.93 | AA: 0.29, 2,4-dichlorophenol: 0.76, Adrenaline: 0.70 | [101] |
| laccase | fluorimetry, colorimetry | TAC, AA | AA: 10~130, TAC: 10~100 | AA: 0.70, TAC: 0.30 | [112] |
| laccase | fluorimetry | catechins, epicatechins and polyphenol, etc. | 1 ng/mL~100 mg/mL | 1 ng/mL | [159] |
| laccase | colorimetry | CA, GSH, Trolox | CA: 0.01~130, Trolox: 0.01~180, GSH: 1~100 | CA: 0.00483, Trolox: 0.00739, GSH: 0.00889 | [91] |
| Enzyme | Detection Method | Detection Object | Detection Range (μmol/L) | LOD (μmol/L) | Reference |
|---|---|---|---|---|---|
| OXD, catalase, laccase | colorimetry | TAC, phenol compound | AA: 0~25; 2,4-DP: 3.1~613.5; adrenaline: 1.09~272.93 | AA: 0.29; 2,4-DP: 0.76; adrenaline: 0.70 | [101] |
| OXD, POD | colorimetry | DA, GSH, AA, etc. | 0.01~0.25 | DA: 0.00826, AA: 0.00542, GSH: 0.00289, Cys: 0.00624 | [160] |
3.2. Nanozymes-Based Antioxidant Detection Device
3.2.1. Sensor Array Devices
3.2.2. Paper-Based Devices

3.2.3. Microfluidic Devices
4. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef] [PubMed]
- Khomsi, M.E.; Imtara, H.; Kara, M.; Hmamou, A.; Assouguem, A.; Bourkhiss, B.; Tarayrah, M.; AlZain, M.N.; Alzamel, N.M.; Noman, O.; et al. Antimicrobial and Antioxidant Properties of Total Polyphenols of Anchusa italica Retz. Molecules 2022, 27, 416. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative stress and diabetes: Antioxidative strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Zhong, O.; Hu, J.; Wang, J.; Tan, Y.; Hu, L.; Lei, X. Antioxidant for treatment of diabetic complications: A meta–analysis and systematic review. J. Biochem. Mol. Toxicol. 2022, 36, e23038. [Google Scholar] [CrossRef]
- Moosmann, B.; Behl, C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin. Investig. Drugs 2002, 11, 1407–1435. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, M.; Shah, S.A.; Saeed, K.; Kim, M.O. Natural Antioxidant Anthocyanins—A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Nutrients 2019, 11, 1195. [Google Scholar] [CrossRef]
- Artimani, T.; Karimi, J.; Mehdizadeh, M.; Yavangi, M.; Khanlarzadeh, E.; Ghorbani, M.; Asadi, S.; Kheiripour, N. Evaluation of pro–oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecol. Endocrinol. 2018, 34, 148–152. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D.; Ahmed, M. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. J. Chem. 2024, 21, 5594386. [Google Scholar] [CrossRef]
- Yaghoubzadeh, Z.; Peyravii Ghadikolaii, F.; Kaboosi, H.; Safari, R.; Fattahi, E. Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate. Int. J. Pept. Res. Ther. 2020, 26, 625–632. [Google Scholar] [CrossRef]
- Jin, R.; Venier, M.; Chen, Q.; Yang, J.; Liu, M.; Wu, Y. Amino antioxidants: A review of their environmental behavior, human exposure, and aquatic toxicity. Chemosphere 2023, 317, 137913. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Bañegil, M.; Schaide, T.; Manzano, R.; Delgado-Adámez, J.; Durán-Merás, I.; Martín-Vertedor, D. Optimization and validation of a rapid liquid chromatography method for determination of the main polyphenolic compounds in table olives and in olive paste. Food Chem. 2017, 233, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, A.; Romasco, T.; D’Ovidio, C.; Rosato, E.; Ulusoy, H.I.; Furton, K.G.; Kabir, A.; Locatelli, M. Determination of phenolic compounds in human saliva after oral administration of red wine by high performance liquid chromatography. J. Pharm. Biomed. Anal. 2022, 209, 114486. [Google Scholar] [CrossRef] [PubMed]
- Jongsawatsataporn, N.; Tanaka, R. The Simultaneous Analysis of 14 Antioxidant Compounds Using HPLC with UV Detection and Their Application to Edible Plants from Asia. Food Anal. Methods 2022, 15, 1331–1340. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, H.; Wang, Y.; Peng, Z.; Guo, Z.; Ma, Y.; Zhang, R.; Zhang, M.; Wu, Q.; Xiao, J.; et al. Effects of different extraction methods on contents, profiles, and antioxidant abilities of free and bound phenolics of Sargassum polycystum from the South China Sea. J. Food Sci. 2022, 87, 968–981. [Google Scholar] [CrossRef]
- Pobłocka-Olech, L.; Isidorov, V.A.; Krauze-Baranowska, M. Characterization of Secondary Metabolites of Leaf Buds from Some Species and Hybrids of Populus by Gas Chromatography Coupled with Mass Detection and Two-Dimensional High-Performance Thin-Layer Chromatography Methods with Assessment of Their Antioxidant Activity. Int. J. Mol. Sci. 2024, 25, 3971. [Google Scholar] [CrossRef]
- Keawkim, K.; Lorjaroenphon, Y.; Vangnai, K.; Jom, K.N. Metabolite–Flavor Profile, Phenolic Content, and Antioxidant Activity Changes in Sacha Inchi (Plukenetia volubilis L.) Seeds during Germination. Foods 2021, 10, 2476. [Google Scholar] [CrossRef]
- Mubinov, A.R.; Avdeeva, E.V.; Kurkin, V.A.; Latypova, G.M.; Farkhutdinov, R.R.; Kataev, V.A.; Ryazanova, T.K. Fatty Acid Profile and Antioxidant Activity of Nigella Sativa Fatty Oil. Pharm. Chem. J. 2021, 55, 798–802. [Google Scholar] [CrossRef]
- Spencer, P.V.D.; Libardi, S.H.; Dias, F.F.G.; Oliveira, W.D.S.; Thomasini, R.L.; Godoy, H.T.; Cardoso, D.R.; Junior, S.B. Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil From Cymbopogon densiflorus (Steud.) Stapf Flowers. J. Essent. Oil Bear. Plants 2021, 24, 40–52. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Kumar, R.; Shikha, D.; Sinha, S.K. DPPH radical scavenging assay: A tool for evaluating antioxidant activity in 3% cobalt—Doped hydroxyapatite for orthopaedic implants. Ceram. Int. 2024, 50, 13967–13973. [Google Scholar] [CrossRef]
- Oliveira, G.K.F.; Tormin, T.F.; Sousa, R.M.F.; de Oliveira, A.; de Morais, S.A.L.; Richter, E.M.; Munoz, R.A.A. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity. Food Chem. 2016, 192, 691–697. [Google Scholar] [CrossRef]
- Niu, X.; Qin, R.; Zhao, Y.; Han, L.; Lu, J.; Lv, C. Simultaneous determination of 19 constituents in Cimicifugae Rhizoma by HPLC–DAD and screening for antioxidants through DPPH free radical scavenging assay. Biomed. Chromatogr. 2019, 33, e4624. [Google Scholar] [CrossRef] [PubMed]
- Nenadis, N.; Tsimidou, M.Z. DPPH (2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl) radical scavenging mixed-mode colorimetric assay(s). In Measurement of Antioxidant Activity & Capacity; Wiley: Hoboken, NJ, USA, 2018; pp. 141–164. [Google Scholar]
- Raudonis, R.; Raudone, L.; Jakstas, V.; Janulis, V. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries. J. Chromatogr. A 2012, 1233, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef] [PubMed]
- Bekdeşer, B.; Apak, R. Colorimetric Sensing of Antioxidant Capacity via Auric Acid Reduction Coupled to ABTS Oxidation. ACS Omega 2024, 9, 11738–11746. [Google Scholar] [CrossRef]
- Cano, A.; Arnao, M.B. ABTS/TEAC (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)/Trolox®-Equivalent Antioxidant Capacity) radical scavenging mixed-mode assay. In Measurement of Antioxidant Activity & Capacity; Wiley: Hoboken, NJ, USA, 2018; pp. 117–139. [Google Scholar]
- Liu, C.; Zhur, O.; Yan, X.; Yin, T.; Rao, H.; Xiao, X.; Zhou, M.; Wu, C.; He, H. A Method for Detecting Antioxidant Activity of Antioxidants by Utilizing Oxidative Damage of Pigment Protein. Appl. Biochem. Biotechnol. 2022, 194, 5522–5536. [Google Scholar] [CrossRef]
- Borneo, R.; León, A.E.; Aguirre, A.; Ribotta, P.; Cantero, J.J. Antioxidant capacity of medicinal plants from the Province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chem. 2009, 112, 664–670. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity; Wiley: Hoboken, NJ, USA, 2018; pp. 77–106. [Google Scholar]
- Nkhili, E.; Brat, P. Reexamination of the ORAC assay: Effect of metal ions. Anal. Bioanal. Chem. 2011, 400, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Zhang, S.; Akoh, C.C. Enzymatic synthesis of 1-o-galloylglycerol: Characterization and determination of its antioxidant properties. Food Chem. 2020, 305, 125479. [Google Scholar] [CrossRef] [PubMed]
- Campanella, L.; Bonanni, A.; Favero, G.; Tomassetti, M. Determination of antioxidant properties of aromatic herbs, olives and fresh fruit using an enzymatic sensor. Anal. Bioanal. Chem. 2003, 375, 1011–1016. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, D.; Qiu, Y.; Chu, L.; Lin, Y. The Role of Nanomaterials in Modulating the Structure and Function of Biomimetic Catalysts. Front. Chem. 2020, 8, 764. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wei, H.; Dong, S.; Yan, X. Nanozymes. Adv. Mater. 2024, 36, 2305249. [Google Scholar] [CrossRef]
- Dong, H.; Fan, Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjug. Chem. 2019, 30, 1273–1296. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Tao, S.W.; Shen, Y.S. Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sens. Actuators B Chem. 1997, 40, 161–165. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, J.; Zhou, Y.; Pan, X.; He, H.; Ye, Z.; Pan, X. Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing. Chem. Commun. 2013, 49, 7656. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Anal. Chem. 2008, 80, 2250–2254. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; He, S.; Huang, Y. CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem. Commun. 2011, 47, 10785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, J.; Liu, S.; Wang, L.; Qin, X.; Lu, W.; Chang, G.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; et al. Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst 2012, 137, 1325. [Google Scholar] [CrossRef] [PubMed]
- Annie Vinosha, P.; Ansel Mely, L.; Emima Jeronsia, J.; Raja, K.; Queen Sahaya Tamilarsi, D.; Krishnan, S.; Jerome Das, S. Investigation of optical, electrical and magnetic properties of cobalt ferrite nanoparticles by naive co-precipitation technique. Optik 2016, 127, 9917–9925. [Google Scholar]
- Liu, S.; Lu, F.; Xing, R.; Zhu, J.J. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chemistry 2011, 17, 620–625. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, X.; Chen, K. CePO4:Tb,Gd hollow nanospheres as peroxidase mimic and magnetic–fluorescent imaging agent. Chem. Commun. 2012, 48, 6839. [Google Scholar] [CrossRef]
- Zhang, X.; He, S.; Chen, Z.; Huang, Y. CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J. Agric. Food Chem. 2013, 61, 840–847. [Google Scholar] [CrossRef]
- Cai, Q.; Lu, S.; Liao, F.; Li, Y.; Ma, S.; Shao, M. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 2014, 6, 8117. [Google Scholar] [CrossRef] [PubMed]
- André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H.C.; Müller, W.E.G.; Tremel, W. V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity. Adv. Funct. Mater. 2010, 21, 501–509. [Google Scholar] [CrossRef]
- Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738. [Google Scholar] [CrossRef]
- Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, X.; Chen, K. Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem. Commun. 2012, 48, 7289–7291. [Google Scholar] [CrossRef]
- Shen, L.-H.; Bao, J.-F.; Wang, D.; Wang, Y.-X.; Chen, Z.-W.; Ren, L.; Zhou, X.; Ke, X.-B.; Chen, M.; Yang, A.-Q. One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application. Nanoscale 2013, 5, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yan, Y.; Xia, B.Y.; Wang, J.Y.; Wang, X. Novel tungsten carbide nanorods: An intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents. Biosens. Bioelectron. 2014, 54, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, G.; Bao, C.; Yuan, A.; Shen, X. Intrinsic Peroxidase-like Activity of Porous CuO Micro-/nanostructures with Clean Surface. Chin. J. Chem. 2014, 32, 151–156. [Google Scholar] [CrossRef]
- Park, C.Y.; Seo, J.M.; Jo, H.; Park, J.; Ok, K.M.; Park, T.J. Hexagonal tungsten oxide nanoflowers as enzymatic mimetics and electrocatalysts. Sci. Rep. 2017, 7, 40928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, Y. Evaluation of the antioxidant activity of phenols and tannic acid determination with Mn3O4 nano-octahedrons as an oxidase mimic. Anal. Methods 2015, 7, 8640–8646. [Google Scholar] [CrossRef]
- Kurup, C.P.; Ahmed, M.U. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. Biosensors 2023, 13, 461. [Google Scholar] [CrossRef]
- Wei, M.; Lee, J.; Xia, F.; Lin, P.; Hu, X.; Li, F.; Ling, D. Chemical design of nanozymes for biomedical applications. Acta Biomater. 2021, 126, 15–30. [Google Scholar] [CrossRef]
- Tang, M.; Li, J.; Cai, X.; Sun, T.; Chen, C. Single-Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chem. Asian J. 2022, 17, e202101422. [Google Scholar] [CrossRef]
- Min, S.; Yu, Q.; Ye, J.; Hao, P.; Ning, J.; Hu, Z.; Chong, Y. Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications. Molecules 2023, 28, 4615. [Google Scholar] [CrossRef]
- Moradi Hasan-Abad, A.; Shabankare, A.; Atapour, A.; Hamidi, G.A.; Salami Zavareh, M.; Sobhani-Nasab, A. The application of peroxidase mimetic nanozymes in cancer diagnosis and therapy. Front. Pharmacol. 2024, 15, 1339580. [Google Scholar] [CrossRef] [PubMed]
- Gorgzadeh, A.; Amiri, P.A.; Yasamineh, S.; Naser, B.K.; Abdulallah, K.A. The potential use of nanozyme in aging and age-related diseases. Biogerontology 2024, 25, 583–613. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, R.; Du, J.; Xie, J.; Guo, R. Defective copper-cobalt binuclear Prussian blue analogue nanozymes with high specificity as lytic polysaccharide monooxygenase-mimic via axial ligation of histidine. J. Colloid Interface Sci. 2024, 657, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; McKeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J.N.; Nicolosi, V. Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for ElectromagneticInterference Shielding. Adv. Mater. 2022, 34, 2106253. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, R.; Qi, W.; Su, R.; He, Z. Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. J. Hazard. Mater. 2022, 429, 128404. [Google Scholar] [CrossRef]
- Wang, T.; Lai, L.; Huang, Y.; Su, E. Nanozyme: An emerging tool for food packaging. Food Control 2024, 155, 110104. [Google Scholar] [CrossRef]
- Huang, Y.; Mu, X.; Wang, J.; Wang, Y.; Xie, J.; Ying, R.; Su, E. The recent development of nanozymes for food quality and safety detection. J. Mater. Chem. B 2022, 10, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Zhang, B.; Cai, D.; Tu, W.; Zhang, J.; Shentu, X.; Ye, Z.; Yu, X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. Biosensors 2022, 13, 69. [Google Scholar] [CrossRef]
- Meng, Y.; Li, W.; Pan, X.; Gadd, G.M. Applications of nanozymes in the environment. Environ. Sci. Nano 2020, 7, 1305–1318. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Wang, Z.; Zhang, Y.; Huang, X.; Li, Z.; Daglia, M.; Xiao, J.; Shi, J.; Zou, X. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. Chem. Eng. J. 2022, 429, 132243. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, N.; Singh, N. NiCr2O4 nanozyme based portable sensor kit for on-site quantification of nerve agent mimic for environment monitoring. Sens. Actuators B Chem. 2023, 392, 134080. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Jiang, H.; Qi, M.; Zhang, X.; Zhu, B.; Han, L. CeO2@nanogel/Au nanozymes to enhance peroxidase activity for a novel ultrasensitive SERS assay of H2O2 determination. Microchem. J. 2023, 195, 109467. [Google Scholar] [CrossRef]
- Shamsabadi, A.; Haghighi, T.; Carvalho, S.; Frenette, L.C.; Stevens, M.M. The Nanozyme Revolution: Enhancing the Performance of Medical Biosensing Platforms. Adv. Mater. 2024, 36, 2300184. [Google Scholar] [CrossRef]
- Xu, D.; Yang, F.; Zheng, D.; Gao, L.; Zhao, G.; Muhammad, P.; Wu, Q. MOF-derived yolk-shell CoN/Co-NC@SiO2 nanozyme with oxidase mimetic activities for colorimetric detection of glutathione. Microchem. J. 2024, 201, 110671. [Google Scholar] [CrossRef]
- Jeyachandran, S.; Srinivasan, R.; Ramesh, T.; Parivallal, A.; Lee, J.; Sathiyamoorthi, E. Recent Development and Application of “Nanozyme” Artificial Enzymes—A Review. Biomimetics 2023, 8, 446. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, R.; Fan, K.; Gao, L.; Yan, X. Exploring the Specificity of Nanozymes. ACS Nano 2024, 18, 2533–2540. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar]
- Bilal, M.; Khaliq, N.; Ashraf, M.; Hussain, N.; Baqar, Z.; Zdarta, J.; Jesionowski, T.; Iqbal, H.M.N. Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids Surf. B Biointerfaces 2023, 221, 112950. [Google Scholar] [CrossRef]
- Khan, S.; Sharifi, M.; Bloukh, S.H.; Edis, Z.; Siddique, R.; Falahati, M. In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta 2021, 224, 121805. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wan, K.; Shi, X. Recent Advances in Nanozyme Research. Adv. Mater. 2019, 31, e1805368. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef] [PubMed]
- Sellami, K.; Couvert, A.; Nasrallah, N.; Maachi, R.; Abouseoud, M.; Amrane, A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. Sci. Total Environ. 2022, 806, 150500. [Google Scholar] [CrossRef]
- Qin, S.; Liu, B.; Xue, Y.; Zhao, R.; Wang, G.; Li, K.; Zheng, L.; Wang, P.; Tang, T.; Yang, Y.; et al. A three-dimensional network structure of metal-based nanozymes for the construction of colorimetric sensors for the detection of antioxidants. Anal. Methods 2024, 16, 2292–2300. [Google Scholar] [CrossRef]
- Dan, J.; Su, Z.; Sun, B.; Wang, J.; Zhang, W. A polymetallic nanozyme with high peroxidase mimetic activity for rapid evaluation of total antioxidant capacity. Microchem. J. 2023, 185, 108302. [Google Scholar] [CrossRef]
- Yan, H.; Hou, W.; Lei, B.; Liu, J.; Song, R.; Hao, W.; Ning, Y.; Zheng, M.; Guo, H.; Pan, C.; et al. Ultrarobust stable ABTS radical cation prepared using Spore@Cu-TMA biocomposites for antioxidant capacity assay. Talanta 2024, 276, 126282. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Zhou, Y. Bimetallic MOF-derived three-dimensional nanoflowers PdCoOx as peroxidase mimic activity for determining total antioxidant capacity. Food Chem. 2024, 457, 140120. [Google Scholar] [CrossRef]
- Han, X.; Liu, L.; Gong, H.; Luo, L.; Han, Y.; Fan, J.; Xu, C.; Yue, T.; Wang, J.; Zhang, W. Dextran-stabilized Fe-Mn bimetallic oxidase-like nanozyme for total antioxidant capacity assay of fruit and vegetable food. Food Chem. 2022, 371, 131115. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Xiao, Y.; Cai, S.; Huang, C.; Guo, S.; Sun, Y.; Song, R.-B.; Li, Z. Carbon dots as light-responsive oxidase-like nanozyme for colorimetric detection of total antioxidant capacity in fruits. Food Chem. 2023, 405, 134749. [Google Scholar] [CrossRef] [PubMed]
- Ni, P.; Liu, S.; Wang, B.; Chen, C.; Jiang, Y.; Zhang, C.; Chen, J.; Lu, Y. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J. Hazard. Mater. 2021, 411, 125106. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, G.; Liu, W.; Zhang, Y.; Zhu, C.; Sun, Q.; Zhang, M.; Wei, H. Platinum–Nickel Nanoparticles with Enhanced Oxidase-like Activity for Total Antioxidant Capacity Bioassay. Anal. Chem. 2023, 95, 5937–5945. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Navarro, A.; Fernández-Romero, J.M.; Gómez-Hens, A. Determination of polyphenolic content in beverages using laccase, gold nanoparticles and long wavelength fluorimetry. Anal. Chim. Acta 2012, 713, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lei, L.; Bai, J.; Zhang, L.; Song, D.; Zhao, J.; Li, J.; Li, Y. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes. Chin. J. Chem. Eng. 2021, 29, 167–175. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Q.; Liu, M.; Xue, L.; Wang, G.; Zhang, S.; Hu, W. N, P, S Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity and Binding Affinity for Total Antioxidant Capacity Assay. ACS Appl. Nano Mater. 2023, 6, 23303–23312. [Google Scholar] [CrossRef]
- Sheng, J.; Wu, Y.; Ding, H.; Feng, K.; Shen, Y.; Zhang, Y.; Gu, N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. Adv. Mater. 2023, 36, 2211210. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, J.; Ouyang, X.; Liao, Y.; Feng, H.; Yu, J.; Chen, L.; Lu, Y.; Yi, Y.; Tang, L. Multifunctional MnCo@C yolk-shell nanozymes with smartphone platform for rapid colorimetric analysis of total antioxidant capacity and phenolic compounds. Biosens. Bioelectron. 2022, 216, 114652. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Cheng, J.; Xu, Y.; Chen, W.; Li, Y. Facile preparation of four-in-one nanozyme catalytic platform and the application in selective detection of catechol and hydroquinone. Sens. Actuators B Chem. 2021, 337, 129763. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, L.; Wang, J.; Peng, B.; Ouyang, X.; Tan, J.; Yu, J.; Feng, H.; Tang, J. Enhanced peroxidase-like activity of boron nitride quantum dots anchored porous CeO2 nanorods by aptamer for highly sensitive colorimetric detection of kanamycin. Sens. Actuators B Chem. 2021, 330, 129318. [Google Scholar] [CrossRef]
- Ozdemir Olgun, F.A.; Üzer, A.; Ozturk, B.D.; Apak, R. A novel cerium oxide nanoparticles–based colorimetric sensor using tetramethyl benzidine reagent for antioxidant activity assay. Talanta 2018, 182, 55–61. [Google Scholar] [CrossRef]
- Liu, B.; Xue, Y.; Gao, Z.; Tang, K.; Wang, G.; Chen, Z.; Zuo, X. Antioxidant identification using a colorimetric sensor array based on Co-N-C nanozyme. Colloids Surf. B Biointerfaces 2021, 208, 112060. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gao, L.; Tang, L.; Peng, B.; Huang, H.; Wang, J.; Yu, J.; Ouyang, X.; Tan, J. Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection. Biosens. Bioelectron. 2019, 146, 111756. [Google Scholar] [CrossRef]
- Ni, H.; Li, X.; Yan, G.; Huang, C.; Zou, H. Colorimetric evaluation of total antioxidant capacity based on peroxidase-like nonstoichiometric Cu2-Se nanoparticles. Sens. Actuators B Chem. 2024, 398, 134794. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Z.; He, J.; Cao, Q.; Zhang, R.; Wang, Q.; Chen, Z.; Chen, W.; Wang, W. Palladium/Rhodium/Iridium Trimetallic Octahedral Nanozymes Exhibiting Enhanced Peroxidase-like Activity for Detecting Total Antioxidant Capacity in Food. ACS Appl. Nano Mater. 2023, 6, 4288–4296. [Google Scholar] [CrossRef]
- Li, S.; Chu, S.; Xia, M.; Wei, H.; Lu, Y. Enhanced biomimetic catalysis via self-cascade photocatalytic hydrogen peroxide production over modified carbon nitride nanozymes for total antioxidant capacity evaluation. J. Colloid Interface Sci. 2024, 660, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Feng, J.; Sun, H.; Liang, Y.; Du, T.; Dan, J.; Wang, J.; Zhang, W. CuBi bimetallic aerogel as peroxidase-like nanozyme for total antioxidant capacity colorimetric detection. Sens. Actuators B Chem. 2023, 379, 133249. [Google Scholar] [CrossRef]
- Liu, S.; Nie, C.; He, F.; Wu, G.; Wang, H.; Li, S.; Du, C.; Zheng, Z.; Cheng, J.; Shen, Y.; et al. Oxidase-like nanozymes-driven colorimetric, fluorescence and electrochemiluminescence assays for pesticide residues. Trends Food Sci. Technol. 2024, 150, 104597. [Google Scholar] [CrossRef]
- Tao, C.; Jiang, Y.; Chu, S.; Miao, Y.; Zhang, J.; Lu, Y.; Niu, L. Natural Enzyme-Inspired Design of the Single-Atom Cu Nanozyme as Dual-Enzyme Mimics for Distinguishing Total Antioxidant Capacity and the Ascorbic Acid Level. Anal. Chem. 2024, 96, 3107–3115. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Zhang, H.; Shi, W.; Huang, H.; Li, Y. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123003. [Google Scholar] [CrossRef]
- Magdy, G.; Saad Radwan, A.; Belal, F.; Kamal El-Deen, A. Simple and affordable synchronous spectrofluorimetric determination of the natural anticancer polyphenols; resveratrol and curcumin in human plasma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123029. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Bai, J.; Li, J.; Lei, L.; Zhang, W.; Yan, S.; Li, Y. Fluorescence detection of dopamine based on the polyphenol oxidase–mimicking enzyme. Anal. Bioanal. Chem. 2020, 412, 5291–5297. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Zhang, X.; Wang, C.; Xu, R.; Li, Y.; Wei, W.; Zhang, Y.; Liu, S. The enhanced oxidase-like activity of modified nanoceria/ZIF-67 for fluorescence and smartphone-assisted visual detection of tannic acid. Sens. Actuators B Chem. 2024, 418, 136130. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Zhang, X.; Wang, M.; Lin, Z.; Zhang, Y.; Liu, A. MnO2 nanosheets based catechol oxidase mimics for robust electrochemical sensor: Synthesis, mechanism and its application for ultrasensitive and selective detection of dopamine. Chem. Eng. J. 2024, 493, 152656. [Google Scholar] [CrossRef]
- Tortolini, C.; Bollella, P.; Zumpano, R.; Favero, G.; Mazzei, F.; Antiochia, R. Metal Oxide Nanoparticle Based Electrochemical Sensor for Total Antioxidant Capacity (TAC) Detection in Wine Samples. Biosensors 2018, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Serban, A.; Radulescu, C.; Danet, A.F.; Florescu, M. Bioelectrochemical evaluation of plant extracts and gold nanozyme-based sensors for total antioxidant capacity determination. Bioelectrochemistry 2019, 129, 124–134. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, C.; Zeng, X.; Lei, J.; Hou, J.; Huo, D.; Hou, C. Co Single-Atom Nanozymes for the Simultaneous Electrochemical Detection of Uric Acid and Dopamine in Biofluids. ACS Appl. Nano Mater. 2024, 7, 6273–6283. [Google Scholar] [CrossRef]
- Shang, L.; Wen, S.; Liu, D.; Chen, J.; Mu, M.; Duan, X.; Xu, M.; Yang, J.; Wu, Y.; Zhao, B.; et al. Surface-enhanced Raman spectroscopy sensing of Huangjiu’s total antioxidant capacity utilizing polyoxometalate-based frameworks nanozymes. Sens. Actuators B Chem. 2024, 417, 136075. [Google Scholar] [CrossRef]
- Xu, G.; Song, P.; Xia, L. Difunctional AuNPs@PVP with oxidase-like activity for SERRS detection of total antioxidant capacity. Talanta 2024, 270, 125554. [Google Scholar] [CrossRef]
- Dong, Z.; Xia, S.; Alboull, A.a.M.A.; Mostafa, I.M.; Abdussalam, A.; Zhang, W.; Han, S.; Xu, G. Bimetallic CoMoO4 Nanozymes Enhanced Luminol Chemiluminescence for the Detection of Dopamine. ACS Appl. Nano Mater. 2024, 7, 2983–2991. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Li, W.; Zheng, Y.; Xu, W. Colorimetric/fluorescent dual-mode assay for antioxidant capacity of gallnuts based on CuCo nanozyme and AIE luminogen. Talanta 2024, 277, 126345. [Google Scholar] [CrossRef]
- Song, C.; Liu, H.; Zhang, L.; Wang, J.; Zhao, C.; Xu, Q.; Yao, C. FeS nanoparticles embedded in 2D carbon nanosheets as novel nanozymes with peroxidase-like activity for colorimetric and fluorescence assay of H2O2 and antioxidant capacity. Sens. Actuators B Chem. 2022, 353, 131131. [Google Scholar] [CrossRef]
- Wu, F.; Wang, H.; Lv, J.; Shi, X.; Wu, L.; Niu, X. Colorimetric sensor array based on Au2Pt nanozymes for antioxidant nutrition quality evaluation in food. Biosens. Bioelectron. 2023, 236, 115417. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Liu, Y.; Gao, Y.; Zhou, C.; Huang, W.; Zheng, Y. Colorimetric array sensor based on bimetallic nitrogen-doped carbon-based nanozyme material to detect multiple antioxidants. Microchim. Acta 2024, 191, 365. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-X.; Yan, Z.-Y.; Zhao, X.; Chen, L.-J.; Yan, X.-P. Highly efficient persistent luminescent nanozymes-based luminescence-colorimetric dual-mode sensor for total antioxidant capacity assay. Sens. Actuators B Chem. 2024, 405, 135333. [Google Scholar] [CrossRef]
- Mu, Z.; Wang, Y.; Guo, J.; Zhao, M. Active site-tuned high peroxidase-like activity nanozyme for on-the-spot detection of saliva total antioxidant capacity using smartphone devices. Talanta 2024, 276, 126207. [Google Scholar] [CrossRef] [PubMed]
- Niu, P.B.; Wang, Y.Q.; Hu, R.; Yang, T. Cu Nanoparticles/CoO/Carbon Nanofibers as an Enhanced Peroxidase Mimic for Total Antioxidant Capacity Assessment in Drinks. ACS Appl. Nano Mater. 2024, 7, 5996–6004. [Google Scholar] [CrossRef]
- Nagvenkar, A.P.; Gedanken, A. Cu0.89Zn0.11O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection. ACS Appl. Mater. Interfaces 2016, 8, 22301–22308. [Google Scholar] [CrossRef]
- Hong, C.; Chen, L.; Huang, J.; Shen, Y.; Yang, H.; Huang, Z.; Cai, R.; Tan, W. Gold nanoparticle-decorated MoSe2 nanosheets as highly effective peroxidase-like nanozymes for total antioxidant capacity assay. Nano Res. 2022, 16, 7180–7186. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Liu, J.; Tao, H.; Shao, N.; Li, W.; Huang, S.; Zhang, X.; Li, N. Mesoporous silica stabilized Cu-Fe bimetallic nanozymes for total antioxidant capacity assay of fruit foods. Appl. Microbiol. Biotechnol. 2023, 107, 4301–4309. [Google Scholar] [CrossRef]
- Lan, X.; Zhuo, J.; Luo, L.; Sun, H.; Liang, Y.; Feng, J.; Shu, R.; Li, Y.; Wang, T.; Zhang, W.; et al. Metal-phenolic networks derived CN-FeC hollow nanozyme with robust peroxidase-like activity for total antioxidant capacity detection. Colloids Surf. B Biointerfaces 2024, 234, 113640. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, F.; Zhang, Q.; Li, S. N-doped MoS2-nanoflowers as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chim. Acta 2021, 1180, 338740. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Zhao, S.; Wang, Q.; Wei, H. N-Doped Carbon As Peroxidase-Like Nanozymes for Total Antioxidant Capacity Assay. Anal. Chem. 2019, 91, 15267–15274. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.-W.; Li, J.-Q.; Zhang, R.; Wang, A.-J.; Feng, J.-J. Nitrogen-Doped Carbon Nanoflowers Decorated with PtNi Nanoparticles for Colorimetric Detection of Total Antioxidant Capacity. ACS Appl. Nano Mater. 2023, 6, 2805–2812. [Google Scholar] [CrossRef]
- Cui, C.; Wang, Q.; Liu, Q.; Deng, X.; Liu, T.; Li, D.; Zhang, X. Porphyrin-based porous organic framework: An efficient and stable peroxidase-mimicking nanozyme for detection of H2O2 and evaluation of antioxidant. Sens. Actuators B Chem. 2018, 277, 86–94. [Google Scholar] [CrossRef]
- Luan, T.; Zhang, Y.; Song, Z.; Zhou, Y.; Ma, C.-B.; Lu, L.; Du, Y. Accelerated and precise identification of antioxidants and pesticides using a smartphone-based colorimetric sensor array. Talanta 2024, 277, 126275. [Google Scholar] [CrossRef]
- Guan, H.; Du, S.; Han, B.; Zhang, Q.; Wang, D. A rapid and sensitive smartphone colorimetric sensor for detection of ascorbic acid in food using the nanozyme paper-based microfluidic chip. Lwt 2023, 184, 115043. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Ahmed, S.R.; Weng, X.; Neethirajan, S. Chitosan as a peroxidase mimic: Paper based sensor for the detection of hydrogen peroxide. Sens. Actuators B Chem. 2018, 272, 8–13. [Google Scholar] [CrossRef]
- Geng, X.; Xue, R.; Liang, F.; Liu, Y.; Wang, Y.; Li, J.; Huang, Z. Synergistic effect of silver nanoclusters and graphene oxide on visible light-driven oxidase-like activity: Construction of a sustainable nanozyme for total antioxidant capacity detection. Talanta 2023, 259, 124565. [Google Scholar] [CrossRef]
- Mohammed Ameen, S.S.; Omer, K.M. Temperature-resilient and sustainable Mn-MOF oxidase-like nanozyme (UoZ-4) for total antioxidant capacity sensing in some citrus fruits: Breaking the temperature barrier. Food Chem. 2024, 448, 139170. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zou, B.; Zhang, X.; Yang, J.; Bi, Z.; Huang, H.; Li, Y. A sensor array based on a nanozyme with polyphenol oxidase activity for the identification of tea polyphenols and Chinese green tea. Biosens. Bioelectron. 2024, 250, 116056. [Google Scholar] [CrossRef]
- Caetano, F.R.; Carneiro, E.A.; Agustini, D.; Figueiredo-Filho, L.C.S.; Banks, C.E.; Bergamini, M.F.; Marcolino-Junior, L.H. Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water. Biosens. Bioelectron. 2018, 99, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Karami, C.; Taher, M.A. A catechol biosensor based on immobilizing laccase to Fe3O4@Au core-shell nanoparticles. Int. J. Biol. Macromol. 2019, 129, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Maleki, N.; Kashanian, S.; Maleki, E.; Nazari, M. A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochem. Eng. J. 2017, 128, 1–11. [Google Scholar] [CrossRef]
- Mohtar, L.G.; Aranda, P.; Messina, G.A.; Nazareno, M.A.; Pereira, S.V.; Raba, J.; Bertolino, F.A. Amperometric biosensor based on laccase immobilized onto a nanostructured screen-printed electrode for determination of polyphenols in propolis. Microchem. J. 2019, 144, 13–18. [Google Scholar] [CrossRef]
- Chawla, S.; Rawal, R.; Kumar, D.; Pundir, C.S. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode. Anal. Biochem. 2012, 430, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Rawal, R.; Chawla, S.; Devender; Pundir, C.S. An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract. Enzym. Microb. Technol. 2012, 51, 179–185. [Google Scholar] [CrossRef]
- Chawla, S.; Rawal, R.; Pundir, C.S. Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. J. Biotechnol. 2011, 156, 39–45. [Google Scholar] [CrossRef]
- Roy, J.J.; Abraham, T.E.; Abhijith, K.S.; Kumar, P.V.S.; Thakur, M.S. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosens. Bioelectron. 2005, 21, 206–211. [Google Scholar] [CrossRef]
- Magro, M.; Baratella, D.; Colò, V.; Vallese, F.; Nicoletto, C.; Santagata, S.; Sambo, P.; Molinari, S.; Salviulo, G.; Venerando, A.; et al. Electrocatalytic nanostructured ferric tannate as platform for enzyme conjugation: Electrochemical determination of phenolic compounds. Bioelectrochemistry 2020, 132, 107418. [Google Scholar] [CrossRef]
- Fu, Z.; Guo, F.; Qiu, J.; Zhang, R.; Wang, M.; Wang, L. Extension of the alkyl chain length to adjust the properties of laccase-mimicking MOFs for phenolic detection and discrimination. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121606. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, M.; Revenga-Parra, M.; Gutiérrez-Sánchez, C.; Hernández-Apaolaza, L.; Pariente, F.; Lorenzo, E. Fluorescent enzymatic assay for direct total polyphenol determination in food-related samples. Talanta 2022, 247, 123576. [Google Scholar] [CrossRef] [PubMed]
- Casero, E.; Petit-Domínguez, M.D.; Vázquez, L.; Ramírez-Asperilla, I.; Parra-Alfambra, A.M.; Pariente, F.; Lorenzo, E. Laccase biosensors based on different enzyme immobilization strategies for phenolic compounds determination. Talanta 2013, 115, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Delgado, M.M.; Alemán-Nava, G.S.; Rodríguez-Delgado, J.M.; Dieck-Assad, G.; Martínez-Chapa, S.O.; Barceló, D.; Parra, R. Laccase-based biosensors for detection of phenolic compounds. TrAC Trends Anal. Chem. 2015, 74, 21–45. [Google Scholar] [CrossRef]
- Diaconu, M.; Litescu, S.C.; Radu, G.L. Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sens. Actuators B Chem. 2010, 145, 800–806. [Google Scholar] [CrossRef]
- Akshath, U.S.; Shubha, L.R.; Bhatt, P.; Thakur, M.S. Quantum dots as optical labels for ultrasensitive detection of polyphenols. Biosens. Bioelectron. 2014, 57, 317–323. [Google Scholar] [CrossRef]
- Hao, P.; Liu, Z.; Wang, Z.; Xie, M.; Liu, Q. Colorimetric sensor arrays for antioxidant recognition based on Co3O4 dual-enzyme activities. Analyst 2023, 148, 3843–3850. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-T.; Su, H.-Q.; Xiao, Q.-X.; Qiu, Z.-Y.; Huang, G.-Q.; He, M.-N.; Ge, Y.; Wang, C.-H.; Lin, Y.-W. Design of bifunctional ultrathin MnO2 nanofilm with laccase-like activity for sensing environmental pollutants containing phenol groups. J. Hazard. Mater. 2024, 461, 132493. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ning, D.; Zhang, C.; Liu, Z.; Zhang, R.; Zhao, J.; Zhao, T.; Liu, B.; Zhang, Z. Dual-Colored Carbon Dot Ratiometric Fluorescent Test Paper Based on a Specific Spectral Energy Transfer for Semiquantitative Assay of Copper Ions. ACS Appl. Mater. Interfaces 2017, 9, 18897–18903. [Google Scholar] [CrossRef] [PubMed]
- Patidar, R.; Rebary, B.; Paul, P. Colorimetric and Fluorogenic Recognition of Hg2+ and Cr3+ in Acetonitrile and their Test Paper Recognition in Aqueous Media with the Aid of Rhodamine Based Sensors. J. Fluoresc. 2015, 25, 387–395. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Wei, Y.; Zeng, Q.; Wang, L. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. J. Hazard. Mater. 2020, 381, 120969. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-A.; Tsai, F.-J.; Zeng, Y.-T.; Wang, J.-C.; Hong, C.P.; Huang, P.-H.; Chuang, H.-L.; Lin, S.-Y.; Chan, C.-T.; Ko, Y.-C.; et al. Fast and Effective Turn-on Paper-based Phosphorescence Biosensor for Detection of Glucose in Serum. J. Chin. Chem. Soc. 2016, 63, 424–431. [Google Scholar] [CrossRef]
- Yu, J.; Ge, L.; Huang, J.; Wang, S.; Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 2011, 11, 1286. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Zhang, M.; Wang, Y.; Ge, S.; Yu, J.; Yan, M. Aptamer based test stripe for ultrasensitive detection of mercury(II) using a phenylene-ethynylene reagent on nanoporous silver as a chemiluminescence reagent. Microchim. Acta 2014, 181, 663–670. [Google Scholar] [CrossRef]
- Zheng, M.; Tan, H.; Xie, Z.; Zhang, L.; Jing, X.; Sun, Z. Fast Response and High Sensitivity Europium Metal Organic Framework Fluorescent Probe with Chelating Terpyridine Sites for Fe3+. ACS Appl. Mater. Interfaces 2013, 5, 1078–1083. [Google Scholar] [CrossRef]
- Kwan, K.W.; Wu, R.; Li, W.; Yin, Y.; Chen, X.; Ngan, A.H.W. A Battery-Free Low-Cost Paper-Based Microfluidic Actuator. Adv. Eng. Mater. 2024, 26, 2301558. [Google Scholar] [CrossRef]
- Kim, J.; Yun, S.; Mahadeva, S.K.; Yun, K.; Yang, S.Y.; Maniruzzaman, M. Paper Actuators Made with Cellulose and Hybrid Materials. Sensors 2010, 10, 1473–1485. [Google Scholar] [CrossRef]
- Yun, S.; Kim, J. Characteristics and performance of functionalized MWNT blended cellulose electro-active paper actuator. Synth. Met. 2008, 158, 521–526. [Google Scholar] [CrossRef]
- Yun, S.; Kim, J. Covalently bonded multi-walled carbon nanotubes-cellulose electro-active paper actuator. Sens. Actuators A Phys. 2009, 154, 73–78. [Google Scholar] [CrossRef]
- Diela, A.; Pagkali, V.; Kokkinos, C.; Calokerinos, A.; Economou, A. Multiplexed colorimetric assay of antioxidants in wines with paper-based sensors fabricated by pen plotting. Talanta 2024, 277, 126425. [Google Scholar] [CrossRef]
- Scarsi, A.; Pedone, D.; Pompa, P.P. A multi-line platinum nanozyme-based lateral flow device for the colorimetric evaluation of total antioxidant capacity in different matrices. Nanoscale Adv. 2023, 5, 2167–2174. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.-R.; Ha, S.K.; Choi, I.; Lee, S.H.; Kim, D.; Choi, N.; Sung, J.H. A microfluidic device for evaluating the dynamics of the metabolism-dependent antioxidant activity of nutrients. Lab Chip 2014, 14, 2948. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, J.; Lin, P.; Su, Y.; Li, H.; Xiao, W.; Peng, J. Nanozyme-Catalyzed Colorimetric Detection of the Total Antioxidant Capacity in Body Fluids by Paper-Based Microfluidic Chips. ACS Appl. Mater. Interfaces 2024, 16, 39857–39866. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Liu, T.; Wang, X.; Yu, Y.; Li, Y.; Zhang, L. Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection. Sensors 2024, 24, 6616. https://doi.org/10.3390/s24206616
Cao X, Liu T, Wang X, Yu Y, Li Y, Zhang L. Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection. Sensors. 2024; 24(20):6616. https://doi.org/10.3390/s24206616
Chicago/Turabian StyleCao, Xin, Tianyu Liu, Xianping Wang, Yueting Yu, Yangguang Li, and Lu Zhang. 2024. "Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection" Sensors 24, no. 20: 6616. https://doi.org/10.3390/s24206616
APA StyleCao, X., Liu, T., Wang, X., Yu, Y., Li, Y., & Zhang, L. (2024). Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection. Sensors, 24(20), 6616. https://doi.org/10.3390/s24206616

