Simultaneous Measurement of Strain and Displacement for Railway Tunnel Lining Safety Monitoring
Abstract
:1. Introduction
2. Measurement Principle
2.1. Fiber Bragg Grating Monitoring Technology
2.2. Photogrammetry Technique
3. Optical Video Displacement Meter Test Experiment
3.1. Instrument Accuracy Comparison
3.2. Illumination Experiment
3.3. Fog Experiment
4. Displacement and Strain Simulation of Railway Tunnel Cross-Section
5. Case Study and Analysis
5.1. Analysis of Fiber Optic Grating Strain Sensor Measurement Point Data
5.1.1. Measured Point Strain Data for No Train Traffic
5.1.2. Short-Term Tunnel Lining Strain Measurement
5.1.3. 24 h Tunnel Lining Strain Measurement
5.1.4. 7*24 h Strain Monitoring at Single Measurement Point
5.1.5. Long-Term Tunnel Lining Strain Measurement
5.2. Optical VDM Measurement Analysis
5.2.1. Short-Term Tunnel Lining Displacement Monitoring
5.2.2. 24 h Displacement Data at a Single Measurement Point
5.2.3. Single Measuring Point Continuous 7*24 h Displacement Data
5.2.4. Long-Term Displacement Monitoring
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Ma, E.; Lai, J.; Yang, Y.; Liu, H.; Yang, C.; Hu, Q. Diseases failures characteristics and countermeasures of expressway tunnel of water-rich strata: A case study. Eng. Fail. Anal. 2022, 134, 106056. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Huang, H.-W.; Zhang, D.-M.; Phoon, K.K.; Liu, Z.-Q.; Tang, C. Quantitative evaluation of geological uncertainty and its influence on tunnel structural performance using improved coupled Markov chain. Acta Geotech. 2021, 16, 3709–3724. [Google Scholar] [CrossRef]
- Sun, W.; Liang, Q.; Qin, S.; Yuan, Y.; Zhang, T. Evaluation of groundwater effects on tunnel engineering in loess. Bull. Eng. Geol. Environ. 2021, 80, 1947–1962. [Google Scholar] [CrossRef]
- Jun, H.; Li, M.; Sun, X.; Sun, X.; Wang, S.; Wang, H. Construction monitoring and measurement analysis of small clear space three-dimensional cross cavity. Shanxi Archit. 2021, 47, 124–127. [Google Scholar]
- Du, Z. Research on Application of Gyro Total Station in Orientation of Extra-long Tunnel in Complex Mountainous Area. Railw. Investig. Surv. 2021, 47, 28–32. [Google Scholar]
- Wang, Y.; Wang, K.; Zou, B. LiDAR Real-Time Detection of Tunnel Centerline Based on Particle Swarm Optimization Algorithm. Laser Optoelectron. Prog. 2021, 58, 296–304. [Google Scholar]
- Farahani, B.V.; Barros, F.; Sousa, P.J.; Tavares, P.J.; Moreira, P.M. A railway tunnel structural monitoring methodology proposal for predictive maintenance. Struct. Control. Health Monit. 2020, 27, e2587. [Google Scholar] [CrossRef]
- Ye, X.W.; Ding, P.; Zhou, C.; Li, Y.J.; Ni, Y.; Dong, X.P. Monitoring of metro-tunnel freezing construction using fiber sensing technology. Zhejiang Daxue Xuebao (Gongxue Ban)/J. Zhejiang Univ. (Eng. Sci.) 2013, 47, 1072–1080. [Google Scholar]
- Wischke, M.; Masur, M.; Kröner, M.; Woias, P. Vibration harvesting in traffic tunnels to power wireless sensor nodes. Smart Mater. Struct. 2011, 20, 085014. [Google Scholar] [CrossRef]
- Strauss, A.; Bien, J.; Neuner, H.; Harmening, C.; Seywald, C.; Österreicher, M.; Voit, K.; Pistone, E.; Spyridis, P.; Bergmeister, K. Sensing and monitoring in tunnels testing and monitoring methods for the assessment of tunnels. Struct. Concr. 2020, 21, 1356–1376. [Google Scholar] [CrossRef]
- Song, H.; Pei, H.; Zhu, H. Monitoring of tunnel excavation based on the fiber Bragg grating sensing technology. Measurement 2021, 169, 108334. [Google Scholar] [CrossRef]
- Li, C.; Yang, L.; Luo, C.; Liu, H.; Wan, X. Frost heaving strain monitoring for lining structure in extreme cold and high-altitude area with FBG strain sensors. Measurement 2022, 196, 110918. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J.; Xi, W.; Zhao, P.; Qiao, X.; Deng, X.; Liu, Q. Analysis of tunnel displacement accuracy with total station. Measurement 2016, 83, 29–37. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J.; Xi, W.; Zhao, P.; Li, J.; Qiao, X.; Liu, Q. Application of a total station with RDM to monitor tunnel displacement. J. Perform. Constr. Facil. 2017, 31, 04017030. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, H.; Jiang, W.; Bai, W.; Liu, G. Automatic subway tunnel displacement monitoring using robotic total station. Measurement 2020, 151, 107251. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Sagoe-Crentsil, K.; Zhang, J.; Duan, W. Intelligent robotic systems for structural health monitoring: Applications and future trends. Autom. Constr. 2022, 139, 104273. [Google Scholar] [CrossRef]
- Loupos, K.; Doulamis, A.D.; Stentoumis, C.; Protopapadakis, E.; Makantasis, K.; Doulamis, N.D.; Amditis, A.; Chrobocinski, P.; Victores, J.; Montero, R. Autonomous robotic system for tunnel structural inspection and assessment. Int. J. Intell. Robot. Appl. 2018, 2, 43–66. [Google Scholar] [CrossRef]
- Teng, J.; Shi, Y.; Wang, H.; Wu, J. Review on the research and applications of TLS in ground surface and constructions deformation monitoring. Sensors 2022, 22, 9179. [Google Scholar] [CrossRef]
- Jia, D.; Zhang, W.; Liu, Y. Systematic approach for tunnel deformation monitoring with terrestrial laser scanning. Remote Sens. 2021, 13, 3519. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, K.; Badar, M.; Yi, X.; Lu, P.; Buric, M.; Mao, Z.-H.; Chen, K.P. Improving OFDR distributed fiber sensing by fibers with enhanced rayleigh backscattering and image processing. IEEE Sens. J. 2022, 22, 18471–18478. [Google Scholar] [CrossRef]
- Panella, F.; Roecklinger, N.; Vojnovic, L.; Loo, Y.; Boehm, J. Cost-benefit analysis of rail tunnel inspection for photogrammetry and laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1137–1144. [Google Scholar] [CrossRef]
- Hu, J.; Liu, E.; Yu, J. Application of Structural Deformation Monitoring Based on Close-Range Photogrammetry Technology. Adv. Civ. Eng. 2021, 2021, 6621440. [Google Scholar] [CrossRef]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fibre Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 060901. [Google Scholar] [CrossRef]
- Bonopera, M. Fibre-bragg-grating-based displacement sensors: Review of recent advances. Materials 2022, 15, 5561. [Google Scholar] [CrossRef]
- Shadab, A.; Raghuwanshi, S.K.; Kumar, S. Advances in micro-fabricated fiber Bragg grating for detection of physical, chemical, and biological parameters—A review. IEEE Sens. J. 2022, 22, 15650–15660. [Google Scholar] [CrossRef]
- Jinyi, L.I.; Feicong, Z.H.; Ping, Z.H.; Jiayong, L.I.; Jiang, Y.; Zhijie, W.A. A health monitoring system for inverted arch of salt rock tunnel based on laser level deformation monitor and wFBG. Measurement 2021, 184, 109909. [Google Scholar]
- He, F.; Chen, J.; Li, C.; Xiong, F. Temperature tracer method in structural health monitoring: A review. Measurement 2022, 200, 111608. [Google Scholar] [CrossRef]
- Khan, F.; Xu, Z.; Sun, J.; Khan, F.M.; Ahmed, A.; Zhao, Y. Recent advances in sensors for fire detection. Sensors 2022, 22, 3310. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.C.; Han, T.H. Fast normalized cross-correlation. Circuits Syst. Signal Process. 2009, 28, 819–843. [Google Scholar] [CrossRef]
- Bai, X.; Yang, M.; Ajmera, B. An advanced edge-detection method for noncontact structural displacement monitoring. Sensors 2020, 20, 4941. [Google Scholar] [CrossRef]
- Huang, L.; Xu, Z.; Zhou, C. Modeling and monitoring in a soft argillaceous shale tunnel. Acta Geotech. 2009, 4, 273–282. [Google Scholar] [CrossRef]
Symbol | Quantity | Value |
---|---|---|
E1 | Young’s modulus of rock and soil | 1.1–5 GPa |
E2 | Young’s modulus of lining | 35.5 GPa |
μ1 | Poisson’s ratio of rock and soil | 0.2–0.3 |
μ2 | Poisson’s ratio of lining | 0.2 |
c | Cohesion | 0.28–0.35 MPa |
Φ | The angle of internal friction | 50–60° |
γ1 | Gravity of rock and soil | 15–18 kN/m3 |
γ2 | Gravity of lining | 25 kN/m3 |
Measuring Point Information | A Measuring Point (mm) | B Measuring Point (mm) | ||
---|---|---|---|---|
Lateral Displacement | Vertical Displacement | Lateral Displacement | Vertical Displacement | |
Before opening to traffic | −0.10 | 0.00 | −0.40 | 0.10 |
First train a | 0.00 | −0.50 | 1.50 | 2.20 |
Second train b | −8.10 | −12.90 | −0.60 | −0.60 |
Third train c | −4.30 | −17.90 | −2.80 | −0.50 |
After opening to traffic | −0.10 | 0.00 | −0.50 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, Y.; Zhang, J. Simultaneous Measurement of Strain and Displacement for Railway Tunnel Lining Safety Monitoring. Sensors 2024, 24, 6201. https://doi.org/10.3390/s24196201
Li J, Liu Y, Zhang J. Simultaneous Measurement of Strain and Displacement for Railway Tunnel Lining Safety Monitoring. Sensors. 2024; 24(19):6201. https://doi.org/10.3390/s24196201
Chicago/Turabian StyleLi, Jun, Yuhang Liu, and Jiarui Zhang. 2024. "Simultaneous Measurement of Strain and Displacement for Railway Tunnel Lining Safety Monitoring" Sensors 24, no. 19: 6201. https://doi.org/10.3390/s24196201
APA StyleLi, J., Liu, Y., & Zhang, J. (2024). Simultaneous Measurement of Strain and Displacement for Railway Tunnel Lining Safety Monitoring. Sensors, 24(19), 6201. https://doi.org/10.3390/s24196201