DEIT-Based Bone Position and Orientation Estimation for Robotic Support in Total Knee Arthroplasty—A Computational Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forward Simulation and Inverse Estimation of Conductivity
2.2. Segmentation of Bone Structures
- Remove any values of elements close to electrodes;
- Sort remaining in ascending order and label sorted ;
- Compute slope for all N sorted samples;
- Pick all including any in between first and last ;
- Fit line to with ;
- Compute
- Split the half-open interval into bins;
- Split the half-open interval into bins.
- Set the highest considered bin ;
- Select the first tetrahedral element
- If all are either assigned or discarded, stop;
- If , discard and continue from step 3 with ;
- If has been assigned to a cluster K, continue from step 3 with
- Create new cluster ;
- Assign to new cluster
- Collect all tetrahedral elements adjacent to the four faces of
- Discard any for which holds;
- Skip any already assigned to a cluster K;
- Push remaining to work queue for further processing;
- If is empty, store cluster and continue from step 3 with ;
- Pop first from and continue from step 7 with .
2.3. Bone Position and Axial Orientation
3. Results
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TKA | Total knee arthroplasty |
CT | Computed X-ray tomography |
EIT | Electrical Impedance Tomography |
AEIT | Absolute Electrical Impedance Tomography |
DEIT | Differential Electrical Impedance Tomography |
TDEIT | Time-Differential Electrical Impedance Tomography |
FEM | Finite Element Model |
References
- Shan, L.; Shan, B.; Suzuki, A.; Nouh, F.; Saxena, A. Intermediate and Long-Term Quality of Life After Total Knee Replacement: A Systematic Review and Meta-Analysis. JBJS 2015, 97, 156–168. [Google Scholar] [CrossRef]
- Wang, J.C.; Piple, A.S.; Hill, W.J.; Chen, M.S.; Gettleman, B.S.; Richardson, M.; Heckmann, N.D.; Christ, A.B. Computer-Navigated and Robotic-Assisted Total Knee Arthroplasty: Increasing in Popularity Without Increasing Complications. J. Arthroplast. 2022, 37, 2358–2364. [Google Scholar] [CrossRef] [PubMed]
- Khlopas, A.; Sodhi, N.; Sultan, A.A.; Chughtai, M.; Molloy, R.M.; Mont, M.A. Robotic Arm-Assisted Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 2002–2006. [Google Scholar] [CrossRef]
- Wininger, A.E.; Lambert, B.S.; Sullivan, T.C.; Brown, T.S.; Incavo, S.J.; Park, K.J. Robotic-Assisted Total Knee Arthroplasty Can Increase Frequency of Achieving Target Limb Alignment in Primary Total Knee Arthroplasty for Preoperative Valgus Deformity. Arthroplast. Today 2023, 23, 101196. [Google Scholar] [CrossRef]
- Liow, M.H.L.; Xia, Z.; Wong, M.K.; Tay, K.J.; Yeo, S.J.; Chin, P.L. Robot-Assisted Total Knee Arthroplasty Accurately Restores the Joint Line and Mechanical Axis. A Prospective Randomised Study. J. Arthroplast. 2014, 29, 2373–2377. [Google Scholar] [CrossRef]
- Mahoney, O.; Kinsey, T.; Sodhi, N.; Mont, M.A.; Chen, A.F.; Orozco, F.; Hozack, W. Improved Component Placement Accuracy with Robotic-Arm Assisted Total Knee Arthroplasty. J. Knee Surg. 2020, 35, 337–344. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Ayuob, A.; Onochie, E.; Al-Jabri, T.; Haddad, F.S. Robotic technology in total knee arthroplasty: A systematic review. EFORT Open Rev. 2019, 4, 611–617. [Google Scholar] [CrossRef]
- Rossi, R.; Cottino, U.; Bruzzone, M.; Dettoni, F.; Bonasia, D.E.; Rosso, F. Total knee arthroplasty in the varus knee: Tips and tricks. Int. Orthop. 2019, 43, 151–158. [Google Scholar] [CrossRef]
- Rossi, R.; Rosso, F.; Cottino, U.; Dettoni, F.; Bonasia, D.E.; Bruzzone, M. Total knee arthroplasty in the valgus knee. Int. Orthop. 2014, 38, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Karasavvidis, T.; Pagan Moldenhauer, C.A.; Haddad, F.S.; Hirschmann, M.T.; Pagnano, M.W.; Vigdorchik, J.M. Current Concepts in Alignment in Total Knee Arthroplasty. J. Arthroplast. 2023, 38, S29–S37. [Google Scholar] [CrossRef]
- Rivière, C.; Iranpour, F.; Auvinet, E.; Howell, S.; Vendittoli, P.A.; Cobb, J.; Parratte, S. Alignment options for total knee arthroplasty: A systematic review. Orthop. Traumatol. Surg. Res. 2017, 103, 1047–1056. [Google Scholar] [CrossRef]
- Berrington de González, A.; Mahesh, M.; Kim, K.P.; Bhargavan, M.; Lewis, R.; Mettler, F.; Land, C. Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007. Arch. Intern. Med. 2009, 169, 2071–2077. [Google Scholar] [CrossRef]
- Roche, M. The MAKO robotic-arm knee arthroplasty system. Arch. Orthop. Trauma Surg. 2021, 141, 2043–2047. [Google Scholar] [CrossRef]
- Collins, K.; Agius, P.A.; Fraval, A.; Petterwood, J. Initial Experience with the NAVIO Robotic-Assisted Total Knee Replacement–Coronal Alignment Accuracy and the Learning Curve. J. Knee Surg. 2021, 35, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Pagani, N.R.; Menendez, M.E.; Moverman, M.A.; Puzzitiello, R.N.; Gordon, M.R. Adverse Events Associated With Robotic-Assisted Joint Arthroplasty: An Analysis of the US Food and Drug Administration MAUDE Database. J. Arthroplast. 2022, 37, 1526–1533. [Google Scholar] [CrossRef]
- Feroe, A.G.; Chakraborty, A.K.; Rosenthal, D.I.; Simeone, F.J. Fracture through tracking pin sites following a robotic-assisted total knee arthroplasty. Skelet. Radiol. 2022, 51, 2217–2221. [Google Scholar] [CrossRef]
- Smith, T.J.; Siddiqi, A.; Forte, S.A.; Judice, A.; Sculco, P.K.; Vigdorchik, J.M.; Schwarzkopf, R.; Springer, B.D. Periprosthetic Fractures Through Tracking Pin Sites Following Computer Navigated and Robotic Total and Unicompartmental Knee Arthroplasty: A Systematic Review. JBJS Rev. 2021, 9, e20. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.; Fan, L.F.; Zhao, P.F.; Li, J.H.; Huang, L.; Wang, Z.Y. Robust electrical impedance tomography for biological application: A mini review. Heliyon 2023, 9, e15195. [Google Scholar] [CrossRef] [PubMed]
- Brazey, B.; Haddab, Y.; Zemiti, N. Robust imaging using electrical impedance tomography: Review of current tools. Proc. R. Soc. A Math. Phys. Eng. Sci. 2022, 478, 20210713. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Boyle, A. Electrical Impedance Tomography. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Prins, S.A.; Weller, D.; Labout, J.A.M.; den Uil, C.A. Electrical Impedance Tomography As a Bedside Diagnostic Tool for Pulmonary Embolism. Crit. Care Explor. 2023, 5, e0843. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; He, H.; Su, L.; Wang, J.; Yuan, S.; Long, Y.; Zhao, Z. A novel method for diaphragm-based electrode belt position of electrical impedance tomography by ultrasound. J. Intensive Care 2023, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, I.; Campiglia, L.; Zamidei, L.; Consales, G. Electrical Impedance Tomography (EIT) to Optimize Ventilatory Management in Critically Ill Patients: A Report of Two Cases. Anesth. Res. 2024, 1, 3–7. [Google Scholar] [CrossRef]
- Bronco, A.; Grassi, A.; Meroni, V.; Giovannoni, C.; Rabboni, F.; Rezoagli, E.; Teggia-Droghi, M.; Foti, G.; Bellani, G. Clinical value of electrical impedance tomography (EIT) in the management of patients with acute respiratory failure: A single centre experience. Physiol. Meas. 2021, 42, 074003. [Google Scholar] [CrossRef]
- Chung, C.R.; Ko, R.E.; Jang, G.Y.; Lee, K.; Suh, G.Y.; Kim, Y.; Woo, E.J. Comparison of noninvasive cardiac output and stroke volume measurements using electrical impedance tomography with invasive methods in a swine model. Sci. Rep. 2024, 14, 2962. [Google Scholar] [CrossRef] [PubMed]
- Badeli, V.; Melito, G.M.; Reinbacher-Köstinger, A.; Bíró, O.; Ellermann, K. Electrode Positioning to Investigate the Changes of the Thoracic Bioimpedance Caused by Aortic Dissection - A Simulation Study. J. Electr. Bioimpedance 2020, 11, 38–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, J.; Jiao, Y.; Zhang, W.; Zhang, T.; Tian, X.; Shi, X.; Fu, F.; Wang, L.; Xu, C. A pilot study of contrast-enhanced electrical impedance tomography for real-time imaging of cerebral perfusion. Front. Neurosci. 2022, 16, 1027948. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.Y.; Hou, W.; Huang, Q.; Hou, X.; Bao, X.Y.; Kong, W.X.; Li, C.X.; Qiu, Y.Q.; Hu, S.Y.; Dong, L.H. Advances in electrical impedance tomography-based brain imaging. Mil. Med. Res. 2022, 9, 10. [Google Scholar] [CrossRef]
- Tan, H.; Rossa, C. Electrical Impedance Tomography for Robot-Aided Internal Radiation Therapy. Front. Bioeng. Biotechnol. 2021, 9, 698038. [Google Scholar] [CrossRef]
- Murillo-Ortiz, B.; Hernández-Ramírez, A.; Rivera-Villanueva, T.; Suárez-García, D.; Murguía-Pérez, M.; Martínez-Garza, S.; Rodríguez-Penin, A.; Romero-Coripuna, R.; López-Partida, X.M. Monofrequency electrical impedance mammography (EIM) diagnostic system in breast cancer screening. BMC Cancer 2020, 20, 876. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, K.; Li, M.; Zhang, Y.; Wang, Y.; Yang, F.; Xu, S.; Abubakar, A. Application of Electrical Impedance Tomography for Monitoring Tissue Water Content of the Thigh. In Proceedings of the 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Suzhou, China, 16–18 May 2022; pp. 171–173. [Google Scholar] [CrossRef]
- Anand, G.; Lowe, A.; Al-Jumaily, A.M. Simulation of impedance measurements at human forearm within 1 kHz to 2 MHz. J. Electr. Bioimpedance 2016, 7, 20–27. [Google Scholar] [CrossRef]
- Vilchez-Monge, M.; Canales-Vasquez, D.; Rimolo-Donadio, R. Image Reconstruction of the Human Foearm by Electrical Impedance Tomography. In Proceedings of the 2017 International Conference and Workshop on Bioinspired Intelligence (IWOBI), Funchal, Portugal, 10–12 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wei, W.; Kolb, J.F. Impedance Properties of Trabecular Bone Based on Different Analytical Methods. In Proceedings of the 2021 International Workshop on Impedance Spectroscopy (IWIS), Chemnitz, Germany, 29 September–1 October 2021; pp. 68–69. [Google Scholar] [CrossRef]
- Darma, P.N.; Ibrahim, K.A.; Takei, M. Super High-speed Cross-sectional Imaging of Fat, Muscle, and Bone by Machine Learning and EIT. In Proceedings of the 2021 International Conference on Instrumentation, Control, and Automation (ICA), Bandung, Indonesia, 25–27 August 2021; pp. 4–8. [Google Scholar] [CrossRef]
- Gajre, S.S.; Anand, S.; Singh, U.; Saxena, R.K. Novel method of using dynamic electrical impedance signals for noninvasive diagnosis of knee osteoarthritis. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2207–2210. [Google Scholar]
- Zhu, J.; Lei, Y.; Shah, A.; Schein, G.; Ghaednia, H.; Schwab, J.; Harteveld, C.; Mueller, S. MuscleRehab: Improving Unsupervised Physical Rehabilitation by Monitoring and Visualizing Muscle Engagement. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22, Bend, OR, USA, 29 October–2 November 2022. [Google Scholar] [CrossRef]
- Zhu, J.; Snowden, J.C.; Verdejo, J.; Chen, E.; Zhang, P.; Ghaednia, H.; Schwab, J.H.; Mueller, S. EIT-kit: An Electrical Impedance Tomography Toolkit for Health and Motion Sensing. In Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology, UIST ’21, Virtual Event, USA, 10–14 October 2021; pp. 400–413. [Google Scholar] [CrossRef]
- Ren, Z.; Yang, W. 3D positioning for revision total hip replacement surgery by dual-modality tomography. In Proceedings of the 2015 IEEE International Conference on Imaging Systems and Techniques (IST), Macau, China, 16–18 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Ren, Z.; Yang, W.Q. Development of a Navigation Tool for Revision Total Hip Surgery Based on Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2016, 65, 2748–2757. [Google Scholar] [CrossRef]
- Gupta, S.; Lee, H.J.; Loh, K.J.; Todd, M.D.; Reed, J.; Barnett, A.D. Noncontact Strain Monitoring of Osseointegrated Prostheses. Sensors 2018, 18, 3015. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; Muller, P.; Isaacson, D.; Kolehmainen, V.; Newell, J.; Rajabi Shishvan, O.; Saulnier, G.; Toivanen, J. Fast absolute 3D CGO-based electrical impedance tomography on experimental tank data. Physiol. Meas. 2022, 43, 124001. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, S.; Liu, X.; McEwan, A.; Sun, B.; Wang, H. Estimating Homogeneous Reference Frame for Absolute Electrical Impedance Tomography Through Measurements and Scale Feature. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Yu, H.; Wan, X.; Dong, Z.; Zhang, Z.; Jia, J. Estimation of Reference Voltages for Time-Difference Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, T.; Liu, X.; Yang, B.; Dai, M.; Shi, X.; Dong, X.; Fu, F.; Xu, C. Target Adaptive Differential Iterative Reconstruction (TADI): A Robust Algorithm for Real-Time Electrical Impedance Tomography. IEEE Access 2021, 9, 141999–142011. [Google Scholar] [CrossRef]
- Adler, A.; Lionheart, W.R.B. Uses and abuses of EIDORS: An extensible software base for EIT. Physiol. Meas. 2006, 27, S25–S42. [Google Scholar] [CrossRef]
- Gómez-Laberge, C.; Adler, A. Direct EIT Jacobian calculations for conductivity change and electrode movement. Physiol. Meas. 2008, 29, S89. [Google Scholar] [CrossRef]
- Adler, A.; Boyle, A. Electrical Impedance Tomography: Tissue Properties to Image Measures. IEEE Trans. Biomed. Eng. 2017, 64, 2494–2504. [Google Scholar] [CrossRef]
- Shewchuk, J.R. An Introduction to the Conjugate Gradient Method without the Agonizing Pain. 1994. Available online: https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (accessed on 30 April 2024).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Quasi-Newton Methods. In Numerical Optimization, 2nd ed.; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2006; Chapter 6; pp. 135–163. [Google Scholar] [CrossRef]
- Asogwa, C.O.; Seyedi, M.; Lai, D.T.H. A preliminary investigation of human body composition using galvanically coupled signals. In Proceedings of the 9th International Conference on Body Area Networks, BodyNets ’14, Brussels, Belgium, 30 September–2 October 2014; pp. 346–351. [Google Scholar] [CrossRef]
- IEC 60601-1:2015; Medical Electrical Equipment Part 1: General Requirements for Basic Safety and Essential Performance. ISO: Geneva, Switzerland, 2015.
- Ogawa, R.; Baidillah, M.R.; Darma, P.N.; Kawashima, D.; Akita, S.; Takei, M. Multifrequency Electrical Impedance Tomography With Ratiometric Preprocessing for Imaging Human Body Compartments. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Creegan, A.; Nielsen, P.M.F.; Tawhai, M.H. A novel two-dimensional phantom for electrical impedance tomography using 3D printing. Sci. Rep. 2024, 14, 2115. [Google Scholar] [CrossRef] [PubMed]
- Imran, A. Sagittal plane knee laxity after ligament retaining unconstrained arthroplasty: A mathematical analysis. J. Mech. Med. Biol. 2012, 12, 1240002. [Google Scholar] [CrossRef]
Tissue | Skin | Fat | Muscle | Bone | Marrow |
---|---|---|---|---|---|
Conductivity | 0.065 | 0.03 | 0.37 | 0.02 | 0.002 |
Electrodes | Number | 16 |
Type | Ag/AgCl | |
Diameter | 7 mm | |
Stimulation | Pattern | opposite electrodes |
Current | 10 mA | |
Regularization | 0.00007 |
Tissue Configuration | ||||||||
---|---|---|---|---|---|---|---|---|
Model | Muscle | Skin | Fat | Initial | Optimal | Initial | Optimal | |
Subcut. | Inter | |||||||
Cylinder | X | – | – | – | 1.4 | 1.1 | 0.72 | 1.14 |
X | X | X | – | 2.8 | 1.3 | 0.86 | 0.20 | |
Realistic | X | – | – | – | 7.9 | 8.0 | 5.42 | 2.90 |
X | X | X | – | 24.8 | 21.0 | 1.76 | 0.56 | |
X | X | X | X | 14.0 | 14.4 | 3.39 | 2.63 | |
mean | – | – | – | – | 10.2 | 9.2 | 2.43 | 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrott, J.; Affortunati, S.; Stadler, C.; Hintermüller, C. DEIT-Based Bone Position and Orientation Estimation for Robotic Support in Total Knee Arthroplasty—A Computational Feasibility Study. Sensors 2024, 24, 5269. https://doi.org/10.3390/s24165269
Schrott J, Affortunati S, Stadler C, Hintermüller C. DEIT-Based Bone Position and Orientation Estimation for Robotic Support in Total Knee Arthroplasty—A Computational Feasibility Study. Sensors. 2024; 24(16):5269. https://doi.org/10.3390/s24165269
Chicago/Turabian StyleSchrott, Jakob, Sabrina Affortunati, Christian Stadler, and Christoph Hintermüller. 2024. "DEIT-Based Bone Position and Orientation Estimation for Robotic Support in Total Knee Arthroplasty—A Computational Feasibility Study" Sensors 24, no. 16: 5269. https://doi.org/10.3390/s24165269
APA StyleSchrott, J., Affortunati, S., Stadler, C., & Hintermüller, C. (2024). DEIT-Based Bone Position and Orientation Estimation for Robotic Support in Total Knee Arthroplasty—A Computational Feasibility Study. Sensors, 24(16), 5269. https://doi.org/10.3390/s24165269