Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map
Abstract
:1. Introduction
2. Methodology
2.1. Data Source
2.2. Feature Extraction and Enhanced Fusion Method
2.3. Evaluation Metrics
3. Results
3.1. Feature Extraction and Enhanced Fusion
3.2. Training
3.3. Optimization of Post-Processing Parameters
3.4. Error Analysis of True Positives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashley, J.W.; Robinson, M.S.; Hawke, B.R.; van der Bogert, C.H.; Hiesinger, H.; Sato, H.; Speyerer, E.J.; Enns, A.C.; Wagner, R.V.; Young, K.E.; et al. Geology of the King crater region: New insights into impact melt dynamics on the Moon. J. Geophys. Res. -Planets 2012, 117, 13. [Google Scholar] [CrossRef]
- Dhingra, D.; Head, J.W.; Pieters, C.M. Geological mapping of impact melt deposits at lunar complex craters Jackson and Tycho: Morphologic and topographic diversity and relation to the cratering process. Icarus 2017, 283, 268–281. [Google Scholar] [CrossRef]
- Bray, V.J.; Tornabene, L.L.; Keszthelyi, L.P.; McEwen, A.S.; Hawke, B.R.; Giguere, T.A.; Kattenhorn, S.A.; Garry, W.B.; Rizk, B.; Caudill, C.M.; et al. New insight into lunar impact melt mobility from the LRO camera. Geophys. Res. Lett. 2010, 37, 5. [Google Scholar] [CrossRef]
- Crawford, I.A. Lunar resources: A review. Prog. Phys. Geogr. 2015, 39, 137–167. [Google Scholar] [CrossRef]
- Yue, Z.Y.; Shi, K.; Di, K.C.; Lin, Y.T.; Gou, S. Progresses and prospects of impact crater studies. Sci. China-Earth Sci. 2023, 66, 2441–2451. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, X.; Li, C.; Ren, X.; Yan, W.; Tan, X.; Zhang, X.; Chen, W.; Zuo, W.; Liu, Y.; et al. Landing Site Selection and Overview of China’s Lunar Landing Missions. Space Sci. Rev. 2020, 217, 6. [Google Scholar] [CrossRef]
- Sutoh, M.; Otsuki, M.; Wakabayashi, S.; Hoshino, T.; Hashimoto, T. The Right Path: Comprehensive Path Planning for Lunar Exploration Rovers. IEEE Robot. Autom. Mag. 2015, 22, 22–33. [Google Scholar] [CrossRef]
- Yu, X.Q.; Wang, P.; Zhang, Z.X. Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints. Sensors 2021, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.S.; Kothandhapani, A.; Sundaram, N.S.; Raghavan, V.; Nagaraj, S. Terrain-based Analysis as a Design and Planning Tool for Operations of a Lunar Exploration Rover for the TeamIndus Lunar Mission. In Proceedings of the 2018 SpaceOps Conference, Marseille, France, 28 May–1 June 2018; p. 2494. [Google Scholar]
- Hu, T.; Yang, Z.; Kang, Z.Z.; Lin, H.Y.; Zhong, J.; Zhang, D.Y.; Cao, Y.M.; Geng, H.M. Population of Degrading Small Impact Craters in the Chang’E-4 Landing Area Using Descent and Ground Images. Remote Sens. 2022, 14, 21. [Google Scholar] [CrossRef]
- Robbins, S.J. A New Global Database of Lunar Impact Craters >1-2km: 1. Crater Locations and Sizes, Comparisons With Published Databases, and Global Analysis. J. Geophys. Res. -Planets 2019, 124, 871–892. [Google Scholar] [CrossRef]
- Fairweather, J.H.; Lagain, A.; Servis, K.; Benedix, G.K.; Kumar, S.S.; Bland, P.A. Automatic Mapping of Small Lunar Impact Craters Using LRO-NAC Images. Earth Space Sci. 2022, 9, 19. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, H.S.; Bruzzone, L.; Benediktsson, J.A.; Liang, Y.C.; Liu, B.; Zeng, X.G.; Guan, R.C.; Li, C.L.; Ouyang, Z.Y. Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning. Nat. Commun. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Juntao, Y.; Shuowei, Z.; Lin, L.; Zhizhong, K.; Yuechao, M. Topographic knowledge-aware network for automatic small-scale impact crater detection from lunar digital elevation models. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 13. [Google Scholar] [CrossRef]
- Bugiolacchi, R.; Wöhler, C. Small craters population as a useful geological investigative tool: Apollo 17 region as a case study. Icarus 2020, 350, 20. [Google Scholar] [CrossRef]
- Xiao, Z.Y. Size-frequency distribution of different secondary crater populations: 1. Equilibrium caused by secondary impacts. J. Geophys. Res. -Planets 2016, 121, 2404–2425. [Google Scholar] [CrossRef]
- Kawashima, O.; Morota, T.; Ohtake, M.; Kasahara, S. Size-frequency measurements of meter-sized craters and boulders in the lunar polar regions for landing-site selections of future lunar polar missions. Icarus 2022, 378, 13. [Google Scholar] [CrossRef]
- Cadogan, P.H. Automated precision counting of very small craters at lunar landing sites. Icarus 2020, 348, 32. [Google Scholar] [CrossRef]
- Feng, Q.H.; Xu, X.Z.; Wang, Z.X. Deep learning-based small object detection: A survey. Math. Biosci. Eng. 2023, 20, 6551–6590. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A survey and performance evaluation of deep learning methods for small object detection. Expert Syst. Appl. 2021, 172, 14. [Google Scholar] [CrossRef]
- Wu, J.Q.; Xu, S.B. From Point to Region: Accurate and Efficient Hierarchical Small Object Detection in Low-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 16. [Google Scholar] [CrossRef]
- Tong, K.; Wu, Y.Q. Deep learning-based detection from the perspective of small or tiny objects: A survey. Image Vis. Comput. 2022, 123, 26. [Google Scholar] [CrossRef]
- Lang, X.; Yuan, L.; Li, S.; Liu, M. Pipeline Multipoint Leakage Detection Method Based on KKL-MSCNN. IEEE Sens. J. 2024, 24, 11438–11449. [Google Scholar] [CrossRef]
- Bo, Z.; Di, K.C.; Liu, Z.Q.; Yue, Z.Y.; Liu, J.; Shi, K. A catalogue of meter-scale impact craters in the Chang’e-5 landing area measured from centimeter-resolution descent imagery. Icarus 2022, 378, 10. [Google Scholar] [CrossRef]
- La Grassa, R.; Cremonese, G.; Gallo, I.; Re, C.; Martellato, E. YOLOLens: A Deep Learning Model Based on Super-Resolution to Enhance the Crater Detection of the Planetary Surfaces. Remote Sens. 2023, 15, 22. [Google Scholar] [CrossRef]
- Tewari, A.; Khanna, N. Arbitrary Scale Super-Resolution Assisted Lunar Crater Detection in Satellite Images. arXiv 2024, arXiv:2402.05068. [Google Scholar] [CrossRef]
- Yan, Y.; Qi, D.; Li, C. Vision-based crater and rock detection using a cascade decision forest. IET Comput. Vis. 2019, 13, 549–555. [Google Scholar] [CrossRef]
- Zang, S.; Mu, L.; Xian, L.; Zhang, W. Semi-Supervised Deep Learning for Lunar Crater Detection Using CE-2 DOM. Remote Sens. 2021, 13, 2819. [Google Scholar] [CrossRef]
- Prete, R.D.; Saveriano, A.; Renga, A. A Deep Learning-based Crater Detector for Autonomous Vision-Based Spacecraft Navigation. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27–29 June 2022; pp. 231–236. [Google Scholar]
- Chatterjee, S.; Chakraborty, S.; Nath, A.; Chowdhury, P.R.; Deshmukh, B. Near-Real-Time Detection of Craters: A YOLO v5 Based Approach. In Proceedings of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 27–29 January 2023; pp. 1–4. [Google Scholar]
- Zhu, L.L.; Geng, X.; Li, Z.; Liu, C. Improving YOLOv5 with Attention Mechanism for Detecting Boulders from Planetary Images. Remote Sens. 2021, 13, 19. [Google Scholar] [CrossRef]
- Hari, R.V.S.; Ambalam, R.; Kumar, B.R.; Ibrahim, M.; Ponnusamy, R. Yolo5-Based UAV Surveillance for Tiny Object Detection on Airport Runways. In Proceedings of the 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), Chennai, India, 21–23 December 2023; pp. 1–6. [Google Scholar]
- Su, Y.; Tan, W.X.; Dong, Y.F.; Xu, W.; Huang, P.P.; Zhang, J.X.; Zhang, D.K. Enhancing concealed object detection in Active Millimeter Wave Images using wavelet transform. Signal Process. 2024, 216, 13. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, F.; Huang, X.B.; Song, Z.W.; Hou, W.; Wang, B.Y.; Chen, G.Y. STAE-YOLO: Intelligent detection algorithm for risk management of construction machinery intrusion on transmission lines based on visual perception. IET Gener. Transm. Distrib. 2024, 18, 542–567. [Google Scholar] [CrossRef]
- Mu, L.L.; Xian, L.A.; Li, L.H.; Liu, G.; Chen, M.; Zhang, W. YOLO-Crater Model for Small Crater Detection. Remote Sens. 2023, 15, 17. [Google Scholar] [CrossRef]
- Kim, J.R.; Muller, J.P.; van Gasselt, S.; Morley, J.G.; Neukum, G.; Team, H.C. Automated crater detection, a new tool for Mars cartography and chronology. Photogramm. Eng. Remote Sens. 2005, 71, 1205–1217. [Google Scholar] [CrossRef]
- Saheba, S.M.; Upadhyaya, T.K.; Sharma, R.K. Lunar surface crater topology generation using adaptive edge detection algorithm. IET Image Process. 2016, 10, 657–661. [Google Scholar] [CrossRef]
- Zuo, W.; Li, C.L.; Yu, L.J.; Zhang, Z.B.; Wang, R.W.; Zeng, X.G.; Liu, Y.X.; Xiong, Y.Y. Shadow-highlight feature matching automatic small crater recognition using high-resolution digital orthophoto map from Chang’E Missions. Acta Geochim. 2019, 38, 541–554. [Google Scholar] [CrossRef]
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Speyerer, E.J.; Wagner, R.V.; Robinson, M.S.; Humm, D.C.; Becker, K.; Anderson, J.; Thomas, P. IN-FLIGHT GEOMETRIC CALIBRATION OF THE LUNAR RECONNAISSANCE ORBITER CAMERA. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, XXXIX-B4, 511–516. [Google Scholar] [CrossRef]
- Zaka, S.S.; Majeed, M.N.; Dawood, H.J.V.I. Blind Image Deblurring Using Laplacian of Gaussian (LoG) Based Image Prior. Int. J. Innov. Sci. Technol. 2022, 4, 365–374. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, X.; Zhang, H.; Zhao, L. Edge detection algorithm of image fusion based on improved Sobel operator. In Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 3–5 October 2017; pp. 457–461. [Google Scholar]
- Huang, G.W.; Zhang, F. The fast computation of multi-angle discrete fractional Fourier transform. Signal Process. 2024, 218, 11. [Google Scholar] [CrossRef]
- Liao, T.L.; Peng, C.Y.; Hou, Y.Y. Application of multi-party computation and error correction with image enhancement and convolution neural networks based on cloud computing. IET Image Process. 2023, 17, 1931–1950. [Google Scholar] [CrossRef]
- Ghosal, S.K.; Mandal, J.K.; Sarkar, R. High payload image steganography based on Laplacian of Gaussian (LoG) edge detector. Multimed. Tools Appl. 2018, 77, 30403–30418. [Google Scholar] [CrossRef]
- Gunn, S.R. On the discrete representation of the Laplacian of Gaussian. Pattern Recognit. 1999, 32, 1463–1472. [Google Scholar] [CrossRef]
- Winograd, S. On computing the Discrete Fourier Transform. Proc. Natl. Acad. Sci. USA 1976, 73, 1005–1006. [Google Scholar] [CrossRef]
- Gao, T.Y.; Wushouer, M.; Tuerhong, G. DMS-YOLOv5: A Decoupled Multi-Scale YOLOv5 Method for Small Object Detection. Appl. Sci. 2023, 13, 19. [Google Scholar] [CrossRef]
- Xue, J.; Zheng, Y.G.; Dong, C.L.Y.; Wang, P.; Yasir, M. Improved YOLOv5 network method for remote sensing image-based ground objects recognition. Soft Comput. 2022, 26, 10879–10889. [Google Scholar] [CrossRef]
- Silburt, A.; Ali-Dib, M.; Zhu, C.C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar crater identification via deep learning. Icarus 2019, 317, 27–38. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C.; Zuber, M.T.; Gibson, R.L.; Reimold, W.U. Elliptical craters and basins on the terrestrial planets. Large Meteor. Impacts Planet. Evol. IV 2010, 465, 1–13. [Google Scholar] [CrossRef]
- Christian, J.A.; Derksen, H.; Watkins, R. Lunar Crater Identification in Digital Images. J. Astronaut. Sci. 2021, 68, 1056–1144. [Google Scholar] [CrossRef]
- Wilhelm, T.; Wöhler, C.; Ieee Comp, S.O.C. Uncertainty Guided Recognition of Tiny Craters on the Moon. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Electr Network, Milan, Italy, 10–15 January 2021; pp. 5198–5205. [Google Scholar]
- Qiu, S.H.; Wen, G.J.; Deng, Z.P.; Liu, J.; Fan, Y.X. Accurate non-maximum suppression for object detection in high-resolution remote sensing images. Remote Sens. Lett. 2018, 9, 237–246. [Google Scholar] [CrossRef]
Result | Model | P | R | mAP@50 | mAP@50-95 | F1-Score |
---|---|---|---|---|---|---|
Best epoch results in validation dataset | PSEF | 0.943 | 0.891 | 0.937 | 0.658 | 0.916 |
Basal | 0.912 | 0.806 | 0.898 | 0.498 | 0.856 | |
Optimal post-processing parameter results in test dataset | PSEF | 0.969 | 0.932 | / | / | 0.950 |
Basal | 0.951 | 0.886 | / | / | 0.917 |
Model | Analytical Scale | δD (%) | |δD| (%) | Δe | |Δe| | ΔL (m) |
---|---|---|---|---|---|---|
PSEF | mean | / | 3.94 | / | 0.168 | 1.03 |
median | / | 3.03 | / | 0.124 | 0.78 | |
IQR | 4.54 | / | 0.246 | / | 0.91 | |
standard deviation | 5.67 | / | 0.233 | / | 0.73 | |
Basal | mean | / | 8.91 | / | 0.258 | 1.35 |
median | / | 6.52 | / | 0.250 | 1.11 | |
IQR | 13.76 | / | 0.353 | / | 1.00 | |
standard deviation | 12.26 | / | 0.275 | / | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Lu, Y.-B.; Zhang, L.; Liu, F.; Tian, Y.; Du, H.; Yao, J.; Yu, Z.; Li, D.; Lin, X. Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map. Sensors 2024, 24, 5206. https://doi.org/10.3390/s24165206
Liu H, Lu Y-B, Zhang L, Liu F, Tian Y, Du H, Yao J, Yu Z, Li D, Lin X. Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map. Sensors. 2024; 24(16):5206. https://doi.org/10.3390/s24165206
Chicago/Turabian StyleLiu, Huiwen, Ying-Bo Lu, Li Zhang, Fangchao Liu, You Tian, Hailong Du, Junsheng Yao, Zi Yu, Duyi Li, and Xuemai Lin. 2024. "Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map" Sensors 24, no. 16: 5206. https://doi.org/10.3390/s24165206
APA StyleLiu, H., Lu, Y.-B., Zhang, L., Liu, F., Tian, Y., Du, H., Yao, J., Yu, Z., Li, D., & Lin, X. (2024). Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map. Sensors, 24(16), 5206. https://doi.org/10.3390/s24165206