Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map
Abstract
1. Introduction
2. Methodology
2.1. Data Source
2.2. Feature Extraction and Enhanced Fusion Method
2.3. Evaluation Metrics
3. Results
3.1. Feature Extraction and Enhanced Fusion
3.2. Training
3.3. Optimization of Post-Processing Parameters
3.4. Error Analysis of True Positives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashley, J.W.; Robinson, M.S.; Hawke, B.R.; van der Bogert, C.H.; Hiesinger, H.; Sato, H.; Speyerer, E.J.; Enns, A.C.; Wagner, R.V.; Young, K.E.; et al. Geology of the King crater region: New insights into impact melt dynamics on the Moon. J. Geophys. Res. -Planets 2012, 117, 13. [Google Scholar] [CrossRef]
- Dhingra, D.; Head, J.W.; Pieters, C.M. Geological mapping of impact melt deposits at lunar complex craters Jackson and Tycho: Morphologic and topographic diversity and relation to the cratering process. Icarus 2017, 283, 268–281. [Google Scholar] [CrossRef]
- Bray, V.J.; Tornabene, L.L.; Keszthelyi, L.P.; McEwen, A.S.; Hawke, B.R.; Giguere, T.A.; Kattenhorn, S.A.; Garry, W.B.; Rizk, B.; Caudill, C.M.; et al. New insight into lunar impact melt mobility from the LRO camera. Geophys. Res. Lett. 2010, 37, 5. [Google Scholar] [CrossRef]
- Crawford, I.A. Lunar resources: A review. Prog. Phys. Geogr. 2015, 39, 137–167. [Google Scholar] [CrossRef]
- Yue, Z.Y.; Shi, K.; Di, K.C.; Lin, Y.T.; Gou, S. Progresses and prospects of impact crater studies. Sci. China-Earth Sci. 2023, 66, 2441–2451. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, X.; Li, C.; Ren, X.; Yan, W.; Tan, X.; Zhang, X.; Chen, W.; Zuo, W.; Liu, Y.; et al. Landing Site Selection and Overview of China’s Lunar Landing Missions. Space Sci. Rev. 2020, 217, 6. [Google Scholar] [CrossRef]
- Sutoh, M.; Otsuki, M.; Wakabayashi, S.; Hoshino, T.; Hashimoto, T. The Right Path: Comprehensive Path Planning for Lunar Exploration Rovers. IEEE Robot. Autom. Mag. 2015, 22, 22–33. [Google Scholar] [CrossRef]
- Yu, X.Q.; Wang, P.; Zhang, Z.X. Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints. Sensors 2021, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.S.; Kothandhapani, A.; Sundaram, N.S.; Raghavan, V.; Nagaraj, S. Terrain-based Analysis as a Design and Planning Tool for Operations of a Lunar Exploration Rover for the TeamIndus Lunar Mission. In Proceedings of the 2018 SpaceOps Conference, Marseille, France, 28 May–1 June 2018; p. 2494. [Google Scholar]
- Hu, T.; Yang, Z.; Kang, Z.Z.; Lin, H.Y.; Zhong, J.; Zhang, D.Y.; Cao, Y.M.; Geng, H.M. Population of Degrading Small Impact Craters in the Chang’E-4 Landing Area Using Descent and Ground Images. Remote Sens. 2022, 14, 21. [Google Scholar] [CrossRef]
- Robbins, S.J. A New Global Database of Lunar Impact Craters >1-2km: 1. Crater Locations and Sizes, Comparisons With Published Databases, and Global Analysis. J. Geophys. Res. -Planets 2019, 124, 871–892. [Google Scholar] [CrossRef]
- Fairweather, J.H.; Lagain, A.; Servis, K.; Benedix, G.K.; Kumar, S.S.; Bland, P.A. Automatic Mapping of Small Lunar Impact Craters Using LRO-NAC Images. Earth Space Sci. 2022, 9, 19. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, H.S.; Bruzzone, L.; Benediktsson, J.A.; Liang, Y.C.; Liu, B.; Zeng, X.G.; Guan, R.C.; Li, C.L.; Ouyang, Z.Y. Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning. Nat. Commun. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Juntao, Y.; Shuowei, Z.; Lin, L.; Zhizhong, K.; Yuechao, M. Topographic knowledge-aware network for automatic small-scale impact crater detection from lunar digital elevation models. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 13. [Google Scholar] [CrossRef]
- Bugiolacchi, R.; Wöhler, C. Small craters population as a useful geological investigative tool: Apollo 17 region as a case study. Icarus 2020, 350, 20. [Google Scholar] [CrossRef]
- Xiao, Z.Y. Size-frequency distribution of different secondary crater populations: 1. Equilibrium caused by secondary impacts. J. Geophys. Res. -Planets 2016, 121, 2404–2425. [Google Scholar] [CrossRef]
- Kawashima, O.; Morota, T.; Ohtake, M.; Kasahara, S. Size-frequency measurements of meter-sized craters and boulders in the lunar polar regions for landing-site selections of future lunar polar missions. Icarus 2022, 378, 13. [Google Scholar] [CrossRef]
- Cadogan, P.H. Automated precision counting of very small craters at lunar landing sites. Icarus 2020, 348, 32. [Google Scholar] [CrossRef]
- Feng, Q.H.; Xu, X.Z.; Wang, Z.X. Deep learning-based small object detection: A survey. Math. Biosci. Eng. 2023, 20, 6551–6590. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A survey and performance evaluation of deep learning methods for small object detection. Expert Syst. Appl. 2021, 172, 14. [Google Scholar] [CrossRef]
- Wu, J.Q.; Xu, S.B. From Point to Region: Accurate and Efficient Hierarchical Small Object Detection in Low-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 16. [Google Scholar] [CrossRef]
- Tong, K.; Wu, Y.Q. Deep learning-based detection from the perspective of small or tiny objects: A survey. Image Vis. Comput. 2022, 123, 26. [Google Scholar] [CrossRef]
- Lang, X.; Yuan, L.; Li, S.; Liu, M. Pipeline Multipoint Leakage Detection Method Based on KKL-MSCNN. IEEE Sens. J. 2024, 24, 11438–11449. [Google Scholar] [CrossRef]
- Bo, Z.; Di, K.C.; Liu, Z.Q.; Yue, Z.Y.; Liu, J.; Shi, K. A catalogue of meter-scale impact craters in the Chang’e-5 landing area measured from centimeter-resolution descent imagery. Icarus 2022, 378, 10. [Google Scholar] [CrossRef]
- La Grassa, R.; Cremonese, G.; Gallo, I.; Re, C.; Martellato, E. YOLOLens: A Deep Learning Model Based on Super-Resolution to Enhance the Crater Detection of the Planetary Surfaces. Remote Sens. 2023, 15, 22. [Google Scholar] [CrossRef]
- Tewari, A.; Khanna, N. Arbitrary Scale Super-Resolution Assisted Lunar Crater Detection in Satellite Images. arXiv 2024, arXiv:2402.05068. [Google Scholar] [CrossRef]
- Yan, Y.; Qi, D.; Li, C. Vision-based crater and rock detection using a cascade decision forest. IET Comput. Vis. 2019, 13, 549–555. [Google Scholar] [CrossRef]
- Zang, S.; Mu, L.; Xian, L.; Zhang, W. Semi-Supervised Deep Learning for Lunar Crater Detection Using CE-2 DOM. Remote Sens. 2021, 13, 2819. [Google Scholar] [CrossRef]
- Prete, R.D.; Saveriano, A.; Renga, A. A Deep Learning-based Crater Detector for Autonomous Vision-Based Spacecraft Navigation. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27–29 June 2022; pp. 231–236. [Google Scholar]
- Chatterjee, S.; Chakraborty, S.; Nath, A.; Chowdhury, P.R.; Deshmukh, B. Near-Real-Time Detection of Craters: A YOLO v5 Based Approach. In Proceedings of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 27–29 January 2023; pp. 1–4. [Google Scholar]
- Zhu, L.L.; Geng, X.; Li, Z.; Liu, C. Improving YOLOv5 with Attention Mechanism for Detecting Boulders from Planetary Images. Remote Sens. 2021, 13, 19. [Google Scholar] [CrossRef]
- Hari, R.V.S.; Ambalam, R.; Kumar, B.R.; Ibrahim, M.; Ponnusamy, R. Yolo5-Based UAV Surveillance for Tiny Object Detection on Airport Runways. In Proceedings of the 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), Chennai, India, 21–23 December 2023; pp. 1–6. [Google Scholar]
- Su, Y.; Tan, W.X.; Dong, Y.F.; Xu, W.; Huang, P.P.; Zhang, J.X.; Zhang, D.K. Enhancing concealed object detection in Active Millimeter Wave Images using wavelet transform. Signal Process. 2024, 216, 13. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, F.; Huang, X.B.; Song, Z.W.; Hou, W.; Wang, B.Y.; Chen, G.Y. STAE-YOLO: Intelligent detection algorithm for risk management of construction machinery intrusion on transmission lines based on visual perception. IET Gener. Transm. Distrib. 2024, 18, 542–567. [Google Scholar] [CrossRef]
- Mu, L.L.; Xian, L.A.; Li, L.H.; Liu, G.; Chen, M.; Zhang, W. YOLO-Crater Model for Small Crater Detection. Remote Sens. 2023, 15, 17. [Google Scholar] [CrossRef]
- Kim, J.R.; Muller, J.P.; van Gasselt, S.; Morley, J.G.; Neukum, G.; Team, H.C. Automated crater detection, a new tool for Mars cartography and chronology. Photogramm. Eng. Remote Sens. 2005, 71, 1205–1217. [Google Scholar] [CrossRef]
- Saheba, S.M.; Upadhyaya, T.K.; Sharma, R.K. Lunar surface crater topology generation using adaptive edge detection algorithm. IET Image Process. 2016, 10, 657–661. [Google Scholar] [CrossRef]
- Zuo, W.; Li, C.L.; Yu, L.J.; Zhang, Z.B.; Wang, R.W.; Zeng, X.G.; Liu, Y.X.; Xiong, Y.Y. Shadow-highlight feature matching automatic small crater recognition using high-resolution digital orthophoto map from Chang’E Missions. Acta Geochim. 2019, 38, 541–554. [Google Scholar] [CrossRef]
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Speyerer, E.J.; Wagner, R.V.; Robinson, M.S.; Humm, D.C.; Becker, K.; Anderson, J.; Thomas, P. IN-FLIGHT GEOMETRIC CALIBRATION OF THE LUNAR RECONNAISSANCE ORBITER CAMERA. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, XXXIX-B4, 511–516. [Google Scholar] [CrossRef]
- Zaka, S.S.; Majeed, M.N.; Dawood, H.J.V.I. Blind Image Deblurring Using Laplacian of Gaussian (LoG) Based Image Prior. Int. J. Innov. Sci. Technol. 2022, 4, 365–374. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, X.; Zhang, H.; Zhao, L. Edge detection algorithm of image fusion based on improved Sobel operator. In Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 3–5 October 2017; pp. 457–461. [Google Scholar]
- Huang, G.W.; Zhang, F. The fast computation of multi-angle discrete fractional Fourier transform. Signal Process. 2024, 218, 11. [Google Scholar] [CrossRef]
- Liao, T.L.; Peng, C.Y.; Hou, Y.Y. Application of multi-party computation and error correction with image enhancement and convolution neural networks based on cloud computing. IET Image Process. 2023, 17, 1931–1950. [Google Scholar] [CrossRef]
- Ghosal, S.K.; Mandal, J.K.; Sarkar, R. High payload image steganography based on Laplacian of Gaussian (LoG) edge detector. Multimed. Tools Appl. 2018, 77, 30403–30418. [Google Scholar] [CrossRef]
- Gunn, S.R. On the discrete representation of the Laplacian of Gaussian. Pattern Recognit. 1999, 32, 1463–1472. [Google Scholar] [CrossRef]
- Winograd, S. On computing the Discrete Fourier Transform. Proc. Natl. Acad. Sci. USA 1976, 73, 1005–1006. [Google Scholar] [CrossRef]
- Gao, T.Y.; Wushouer, M.; Tuerhong, G. DMS-YOLOv5: A Decoupled Multi-Scale YOLOv5 Method for Small Object Detection. Appl. Sci. 2023, 13, 19. [Google Scholar] [CrossRef]
- Xue, J.; Zheng, Y.G.; Dong, C.L.Y.; Wang, P.; Yasir, M. Improved YOLOv5 network method for remote sensing image-based ground objects recognition. Soft Comput. 2022, 26, 10879–10889. [Google Scholar] [CrossRef]
- Silburt, A.; Ali-Dib, M.; Zhu, C.C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar crater identification via deep learning. Icarus 2019, 317, 27–38. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C.; Zuber, M.T.; Gibson, R.L.; Reimold, W.U. Elliptical craters and basins on the terrestrial planets. Large Meteor. Impacts Planet. Evol. IV 2010, 465, 1–13. [Google Scholar] [CrossRef]
- Christian, J.A.; Derksen, H.; Watkins, R. Lunar Crater Identification in Digital Images. J. Astronaut. Sci. 2021, 68, 1056–1144. [Google Scholar] [CrossRef]
- Wilhelm, T.; Wöhler, C.; Ieee Comp, S.O.C. Uncertainty Guided Recognition of Tiny Craters on the Moon. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Electr Network, Milan, Italy, 10–15 January 2021; pp. 5198–5205. [Google Scholar]
- Qiu, S.H.; Wen, G.J.; Deng, Z.P.; Liu, J.; Fan, Y.X. Accurate non-maximum suppression for object detection in high-resolution remote sensing images. Remote Sens. Lett. 2018, 9, 237–246. [Google Scholar] [CrossRef]
Result | Model | P | R | mAP@50 | mAP@50-95 | F1-Score |
---|---|---|---|---|---|---|
Best epoch results in validation dataset | PSEF | 0.943 | 0.891 | 0.937 | 0.658 | 0.916 |
Basal | 0.912 | 0.806 | 0.898 | 0.498 | 0.856 | |
Optimal post-processing parameter results in test dataset | PSEF | 0.969 | 0.932 | / | / | 0.950 |
Basal | 0.951 | 0.886 | / | / | 0.917 |
Model | Analytical Scale | δD (%) | |δD| (%) | Δe | |Δe| | ΔL (m) |
---|---|---|---|---|---|---|
PSEF | mean | / | 3.94 | / | 0.168 | 1.03 |
median | / | 3.03 | / | 0.124 | 0.78 | |
IQR | 4.54 | / | 0.246 | / | 0.91 | |
standard deviation | 5.67 | / | 0.233 | / | 0.73 | |
Basal | mean | / | 8.91 | / | 0.258 | 1.35 |
median | / | 6.52 | / | 0.250 | 1.11 | |
IQR | 13.76 | / | 0.353 | / | 1.00 | |
standard deviation | 12.26 | / | 0.275 | / | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Lu, Y.-B.; Zhang, L.; Liu, F.; Tian, Y.; Du, H.; Yao, J.; Yu, Z.; Li, D.; Lin, X. Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map. Sensors 2024, 24, 5206. https://doi.org/10.3390/s24165206
Liu H, Lu Y-B, Zhang L, Liu F, Tian Y, Du H, Yao J, Yu Z, Li D, Lin X. Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map. Sensors. 2024; 24(16):5206. https://doi.org/10.3390/s24165206
Chicago/Turabian StyleLiu, Huiwen, Ying-Bo Lu, Li Zhang, Fangchao Liu, You Tian, Hailong Du, Junsheng Yao, Zi Yu, Duyi Li, and Xuemai Lin. 2024. "Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map" Sensors 24, no. 16: 5206. https://doi.org/10.3390/s24165206
APA StyleLiu, H., Lu, Y.-B., Zhang, L., Liu, F., Tian, Y., Du, H., Yao, J., Yu, Z., Li, D., & Lin, X. (2024). Pseudo-Spectral Spatial Feature Extraction and Enhanced Fusion Image for Efficient Meter-Sized Lunar Impact Crater Automatic Detection in Digital Orthophoto Map. Sensors, 24(16), 5206. https://doi.org/10.3390/s24165206