Inertial Sensor-Based Quantification of Movement Symmetry in Trotting Warmblood Show-Jumping Horses after “Limb-by-Limb” Re-Shoeing of Forelimbs with Rolled Rocker Shoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Re-Shoeing
2.3. Movement Symmetry Analysis
- Prior to re-shoeing at the end of a 4-week shoeing cycle with the “old” shoes.
- After re-shoeing of a randomly selected front limb; i.e., after removal of the old shoe, trimming, and re-shoeing.
- After the re-shoeing of the second front limb.
- In-hand trot on the straight on hard ground (asphalt).
- Trot on well-maintained synthetic footing (Geo Textile—a combination of shredded textile fibers with sand):
- In-hand on the straight;
- Lunged on a 10 m circle to the right;
- Lunged on a 10 m circle to the left.
2.4. Study Design
2.5. Data Normalization
2.6. Statistical Analysis
Quantifying Differences between Left and Right Limb Shoeing Interventions
3. Results
3.1. Baseline Movement Symmetry before Trimming and Re-Shoeing
3.2. Effect of Surface and Movement Direction on Changes after Routine Trimming and Shoeing with Rolled Rocker Shoes
4. Discussion
4.1. Effect of Surface and Movement Direction on Changes after Trimming and Re-Shoeing with Rolled Rocker Shoes
4.2. The “Limb-by-Limb” Data Collection Protocol
4.3. Towards Guideline Values for Normal Changes
4.4. Study Population—Baseline Movement Symmetry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dow, S.; Leendertz, J.; Silver, I.; Goodship, A. Identification of subclinical tendon injury from ground reaction force analysis. Equine Vet. J. 1991, 23, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.S.M.; Morrice-West, A.V.; Whitton, R.C.; Hitchens, P.L. Changes in Thoroughbred speed and stride characteristics over successive race starts and their association with musculoskeletal injury. Equine Vet. J. 2022, 55, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Buchner, H.H.; Savelberg, H.H.; Schamhardt, H.C.; Barneveld, A. Head and trunk movement adaptations in horses with experimentally induced fore- or hindlimb lameness. Equine Vet. J. 1996, 28, 71–76. [Google Scholar] [CrossRef] [PubMed]
- May, S.A.; Wyn-Jones, G. Identification of hindleg lameness. Equine Vet. J. 1987, 19, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Keegan, K.G.; MacAllister, C.G.; Wilson, D.A.; Gedon, C.A.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F. Comparison of an inertial sensor system with a stationary force plate for evaluation of horses with bilateral forelimb lameness. Am. J. Vet. Res. 2012, 73, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.P.; Reed, S.K.; Schoonover, M.J.; Whitfield, C.T.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Keegan, K.G. Associations of force plate and body-mounted inertial sensor measurements for identification of hind limb lameness in horses. Am. J. Vet. Res. 2016, 77, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Persson-Sjodin, E.; Hernlund, E.; Pfau, T.; Andersen, P.H.; Forsstroem, K.H.; Byström, A.; Bragança, F.S.; Hardeman, A.; Egenvall, A.; Greve, L.; et al. Withers vertical movement symmetry is useful for locating the primary lame limb in naturally occurring lameness. Equine Vet. J. 2023, 56, 76–88. [Google Scholar] [CrossRef]
- Hatrisse, C.; Macaire, C.; Hebert, C.; Hanne-Poujade, S.; De Azevedo, E.; Audigié, F.; Ben Mansour, K.; Marin, F.; Martin, P.; Mezghani, N.; et al. A Method for quantifying back flexion/extension from three inertial measurement units mounted on a horse’s withers, thoracolumbar region, and pelvis. Sensors 2023, 23, 9625. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, A.M.; Byström, A.; Roepstorff, L.; Swagemakers, J.H.; Van Weeren, P.R.; Serra Bragança, F.M. Range of motion and between-measurement variation of spinal kinematics in sound horses at trot on the straight line and on the lunge. PLoS ONE 2020, 15, e0222822. [Google Scholar] [CrossRef]
- Landman, M.A.A.M.; de Blaauw, J.A.; van Weeren, P.R.; Hofland, L.J. Field study of the prevalence of lameness in horses with back problems. Vet. Rec. 2004, 155, 165–168. [Google Scholar] [CrossRef]
- Serra Bragança, F.M.; Rhodin, M.; Wiestner, T.; Hernlund, E.; Pfau, T.; van Weeren, P.R.; Weishaupt, M.A. Quantification of the effect of instrumentation error in objective gait assessment in the horse on hindlimb symmetry parameters. Equine Vet. J. 2017, 50, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda Caviedes, M.F.; Forbes, B.S.; Pfau, T. Repeatability of gait analysis measurements in thoroughbreds in training. Equine Vet. J. 2018, 50, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Willemen, M.A.; Savelberg, H.H.C.M.; Barneveld, A. The improvement of the gait quality of sound trotting warmblood horses by normal shoeing and its effect on the load on the lower forelimb. Livest. Prod. Sci. 1997, 52, 145–153. [Google Scholar] [CrossRef]
- Heel, M.C.V.; Moleman, M.; Barneveld, A.; van Weeren, P.R.; Back, W. Changes in location of centre of pressure and hoof-unrollment pattern in relation to an 8-week shoeing interval in the horse. Equine Vet. J. 2010, 37, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Heel, M.C.V.; Weeren, P.R.; Back, W. Shoeing sound warmblood horses with a rolled toe optimises hoof-unrollment and lowers peak loading during breakover. Equine Vet. J. 2010, 38, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Spaak, B.; van Heel, M.C.V.; Back, W. Toe modifications in hind feet shoes optimise hoof-unrollment in sound warmblood horses at trot. Equine Vet. J. 2013, 45, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Hagen, J.; Hüppler, M.; Geiger, S.M.; Mäder, D.; Häfner, F.S. Modifying the height of horseshoes: Effects of wedge shoes, studs, and rocker shoes on the phalangeal alignment, pressure distribution, and hoof-ground contact during motion. J. Equine Vet. Sci. 2017, 53, 8–18. [Google Scholar] [CrossRef]
- Wilson, A.M.; Mcguigan, M.P.; Pardoe, C. The Biomechanical effect of wedged, eggbar and extension shoes in sound and lame horses. Proc. AAEP 2001, 47, 339–343. [Google Scholar]
- Hagen, J.; Hüppler, M.; Häfner, F.; Geiger, S.; Mäder, D. Modifying horseshoes in the mediolateral plane: Effects of side wedge, wide branch, and unilateral roller shoes on the phalangeal alignment, pressure forces, and the footing pattern. J. Equine Vet. Sci. 2016, 37, 77–85. [Google Scholar] [CrossRef]
- Azevedo, M.S.; Côrte, F.D.D.L.; Brass, K.E.; Gallio, M.; Dau, S.L.; Pozzobon, R.; Lopes, M.A.F.; Lopes, L.F.D. Impact or push-off lameness presentation is not altered by the type of track surface where horses are trotted. Arq. Bras. Med. Vet. Zootec. 2015, 67, 1475–1482. [Google Scholar] [CrossRef]
- Barstow, A.; Bailey, J.; Campbell, J.; Harris, C.; Weller, R.; Pfau, T. Does ‘hacking’ surface type affect equine forelimb foot placement, movement symmetry or hoof impact deceleration during ridden walk and trot exercise. Equine Vet. J. 2018, 51, 108–114. [Google Scholar] [CrossRef]
- Pfau, T.; Jennings, C.; Mitchell, H.; Olsen, E.; Walker, A.; Egenvall, A.; Tröster, S.; Weller, R.; Rhodin, M. Lungeing on hard and soft surfaces: Movement symmetry of trotting horses considered sound by their owners. Equine Vet. J. 2016, 48, 83–89. [Google Scholar] [CrossRef]
- Pfau, T.; Stubbs, N.C.; Kaiser, L.J.; Brown, L.E.A.; Clayton, H.M. Effect of trotting speed and circle radius on movement symmetry in horses during lunging on a soft surface. Am. J. Vet. Res. 2012, 73, 1890–1899. [Google Scholar] [CrossRef]
- Eliashar, E.; McGUIGAN, M.P.; Rogers, K.A.; Wilson, A.M. A Comparison of three horseshoeing styles on the kinetics of breakover in sound horses. Equine Vet. J. 2010, 34, 184–190. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Licka, T.; Polman, R. The difference in kinematics of horses walking, trotting and cantering on a flat and banked 10 m circle. Equine Vet. J. 2011, 43, 686–694. [Google Scholar] [CrossRef]
- Starke, S.D.; Witte, T.H.; May, S.A.; Pfau, T. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit. J. Biomech. 2012, 45, 1522–1528. [Google Scholar] [CrossRef]
- Keegan, K.G.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Dent, E.V.; Kellerman, T.E.; Wilson, D.A.; Reed, S.K. Assessment of repeatability of a wireless inertial sensor-based lameness evaluation system for horses. Am. J. Vet. Res. 2011, 72, 1156–1163. [Google Scholar] [CrossRef]
- Warner, S.M.; Koch, T.O.; Pfau, T. Inertial sensors for assessment of back movement in horses during locomotion over ground. Equine Vet. J. 2010, 42 (Suppl. S3), 417–424. [Google Scholar] [CrossRef]
- Hagen, J.; Bos, R.; Brouwer, J.; Lux, S.; Jung, F.T. Influence of trimming, hoof angle and shoeing on breakover duration in sound horses examined with hoof-mounted inertial sensors. Vet. Rec. 2021, 189, e450. [Google Scholar] [CrossRef] [PubMed]
- Self Davies, Z.T.; Spence, A.J.; Wilson, A.M. Ground reaction forces of overground galloping in ridden thoroughbred racehorses. J. Exp. Biol. 2019, 222, jeb204107. [Google Scholar] [CrossRef] [PubMed]
- Reilly, P.T.; Van Eps, A.; Stefanovski, D.; Pfau, T. The influence of different horseshoes and ground substrates on mid-stance hoof orientation at the walk. Equine Vet. J. 2023, 56, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Daly, K.; Davison, J.; Bould, A.; Housby, N.; Weller, R. Changes in movement symmetry over the stages of the shoeing process in military working horses. Vet. Rec. 2016, 179, 195. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, M.E.; Burns, T.D.; Werre, S.R.; White, N.A. The immediate effect of routine hoof trimming and shoeing on horses’ gait. J. Equine Vet. Sci. 2021, 102, 103633. [Google Scholar] [CrossRef]
- Panos, K.E.; Morgan, K.; Gately, R.; Wilkinson, J.; Uden, A.; Reed, S.A. Short communication: Changes in gait after 12 wk of shoeing in previously barefoot horses. J. Anim. Sci. 2023, 101, skac374. [Google Scholar] [CrossRef] [PubMed]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; LaCarrubba, A.; Rasch, M. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation. Equine Vet. J. 2012, 44, 652–656. [Google Scholar] [CrossRef]
- Pfau, T.; Boultbee, H.; Davis, H.; Walker, A.; Rhodin, M. Agreement between two inertial sensor gait analysis systems for lameness examinations in horses. Equine Vet. Educ. 2016, 28, 203–208. [Google Scholar] [CrossRef]
- Macaire, C.; Hanne-Poujade, S.; De Azevedo, E.; Denoix, J.-M.; Coudry, V.; Jacquet, S.; Bertoni, L.; Tallaj, A.; Audigié, F.; Hatrisse, C.; et al. Investigation of thresholds for asymmetry indices to represent the visual assessment of single limb lameness by expert veterinarians on horses trotting in a straight line. Animals 2022, 12, 3498. [Google Scholar] [CrossRef] [PubMed]
- Macaire, C.; Hanne-Poujade, S.; Azevedo, E.D.; Denoix, J.-M.; Coudry, V.; Jacquet, S.; Bertoni, L.; Tallaj, A.; Audigié, F.; Hatrisse, C.; et al. Asymmetry thresholds reflecting the visual assessment of forelimb lameness on circles on a hard surface. Animals 2023, 13, 3319. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, M.; Roepstorff, L.; French, A.; Keegan, K.G.; Pfau, T.; Egenvall, A. Head and pelvic movement asymmetry during lungeing in horses with symmetrical movement on the straight. Equine Vet. J. 2015, 48, 315–320. [Google Scholar] [CrossRef]
- Rhodin, M.; Egenvall, A.; Andersen, P.H.; Pfau, T. Head and pelvic movement asymmetries at trot in riding horses in training and perceived as free from lameness by the owner. PLoS ONE 2017, 12, e0176253. [Google Scholar] [CrossRef]
Horse ID | Sex | Breed | Age (Years) | Time in Rolled Rocker Shoes | Competition Level |
---|---|---|---|---|---|
1000 | Gelding | Dutch Warmblood | 8 | >12 shoeing cycles | >1.40 m |
1001 | Gelding | Dutch Warmblood | 13 | >12 shoeing cycles | >1.45 m |
1002 | Mare | Dutch Warmblood | 7 | >12 shoeing cycles | >1.40 m |
1003 | Gelding | Dutch Warmblood | 11 | >12 shoeing cycles | >1.30 m |
1005 | Gelding | Dutch Warmblood | 11 | >12 shoeing cycles | >1.30 m |
1007 | Gelding | Dutch Warmblood | 11 | 6th shoeing cycle | >1.50 m |
1008 | Gelding | Dutch Warmblood | 12 | 6th shoeing cycle | >1.30 m |
1009 | Mare | Dutch Warmblood | 8 | >12 shoeing cycles | >1.20 m |
1010 | Gelding | Dutch Warmblood | 11 | >12 shoeing cycles | >1.20 m |
1011 | Mare | Dutch Warmblood | 10 | >12 shoeing cycles | >1.20 m |
DHDmin (mm) | DHDmax (mm) | DHDup (mm) | DHROM (mm) | DWDmin (mm) | DWDmax (mm) | DWDup (mm) | DWROM (mm) | DPDmin (mm) | DPDmax (mm) | DPDup (mm) | DPROM (mm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median diff | 2.5 | −2.5 | −1.0 | 1.0 | −0.5 | 1.0 | 0.5 | 2.0 | 0.0 | 1.5 | 1 | −1 |
Mean diff. | 3.9 | −0.35 | 4.7 | NA | −0.6 | −0.8 | 2.65 | NA | −0.1 | 1.55 | 2.4 | NA |
Threshold | abs diff ≤ 6 | abs diff ≤ 3 | abs diff ≤ 3 |
Hard | Soft | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Median | 25th per. | 75th per. | Min | Max | Median | 25th per. | 75th per. | Min | Max | |
HDmin (mm) | 3.0 | −4.0 | 14.5 | −18 | +26 | −0.5 | −11.0 | 10.75 | −21 | 27 |
HDmax (mm) | 1.0 | −3 | 5.5 | −11 | 9 | −3.0 | −8.75 | 2.5 | −22 | 6 |
HDup (mm) | 7.0 | −7.25 | 16 | −22 | 38 | −3.5 | −18.0 | 6.0 | −44 | 27 |
HROM (mm) | 77.0 | 70.75 | 79.75 | 58 | 93 | 80.5 | 73.75 | 88.0 | 62 | 103 |
WDmin (mm) | −4.0 | −7.5 | −1.0 | −11 | 4 | −4.5 | −7.0 | −0.5 | −11 | 8 |
WDmax (mm) | −5.0 | −9.0 | 4.0 | −12 | 6 | −4.5 | −8.0 | 0.5 | −14 | 5 |
WDup (mm) | −9.5 | −13.0 | 1.75 | −22 | 11 | −8.0 | −14.5 | −0.5 | −24 | 9 |
WROM (mm) | 96.5 | 91.0 | 105.0 | 84 | 108 | 101.5 | 94.0 | 112.25 | 87 | 117 |
PDmin (mm) | −3.5 | −6.25 | 3.5 | −7 | 13 | −5.0 | −5.25 | 0.25 | −6 | 12 |
PDmax (mm) | 2.0 | −4.0 | 7.5 | −8 | 24 | 2.5 | −4.0 | 7.25 | −12 | 19 |
PDup (mm) | −2.5 | −7.25 | 7.25 | −12 | 39 | −2.0 | −7.5 | 2.75 | −13 | 28 |
PROM (mm) | 98.0 | 91.5 | 102.0 | 76 | 112 | 102.0 | 98.75 | 111.0 | 76 | 112 |
Left Circle | Right Circle | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Median | 25th per. | 75th per. | Min | Max | Median | 25th per. | 75th per. | Min | Max | |
HDmin (mm) | −2.0 | −11.75 | 11.25 | −35 | 20 | 5.0 | −6.0 | 16.5 | −21 | 23 |
HDmax (mm) | −7.0 | −12.75 | 0.5 | −16 | 15 | 1.0 | −6.25 | 4.25 | −21 | 8 |
HDup (mm) | −4.0 | −22.25 | 7.5 | −50 | 28 | 3.5 | −6.5 | 15.75 | −36 | 32 |
HROM (mm) | 86.0 | 81.0 | 91.25 | 73 | 93 | 87.5 | 78.5 | 91.5 | 76 | 94 |
WDmin (mm) | −18.0 | −21.5 | −11.5 | −29 | −8 | 8.0 | 2.0 | 15.0 | 2 | 18 |
WDmax (mm) | 0.5 | −3.0 | 6.25 | −7 | 13 | −8.5 | −12.25 | −3.5 | −14 | 1 |
WDup (mm) | −15.5 | −24.5 | −7.75 | −32 | 1 | 3.0 | −9.25 | 9.5 | −13 | 17 |
WROM (mm) | 103.0 | 97.5 | 112.75 | 87 | 122 | 102.5 | 92.25 | 113.75 | 90 | 122 |
PDmin (mm) | −10.5 | −21.25 | −3.75 | −23 | 0 | 5.0 | 3.0 | 18.5 | 0 | 21 |
PDmax (mm) | 6.5 | −0.75 | 12.25 | −10 | 16 | 1.0 | −3.0 | 6.5 | −11 | 17 |
PDup (mm) | −7.0 | −15.0 | 1.0 | −18 | 8 | 7.0 | 3.5 | 22.75 | −9 | 36 |
PROM (mm) | 106.5 | 100.0 | 113.75 | 96 | 123 | 109.0 | 102.75 | 115.25 | 89 | 118 |
p-Value | EMM (conf. intv.) Direction | EMM (conf. intv.) Surface | |||||
---|---|---|---|---|---|---|---|
Parameter | Direction | Surface | Inside (L) | Outside (R) | Straight | Hard | Soft |
DHDmin (mm) | 0.946 | 0.068 | −0.800 (−4.401, 2.801) | −0.450 (−4.051, 3.151) | −0.150 (−2.486, 2.186) | −2.267 (−6.038, 1.504) | 1.333 (−0.717, 3.384) |
DHDmax (mm) | 0.411 | 0.070 | 0.425 (−2.670, 3.520) | −1.275 (−4.370, 1.820) | 0.725 (−1.385, 2.835) | −1.517 (−4.746, 1.713) | 1.433 (−0.464, 3.331) |
DHDup (mm) | 0.319 | 0.038 | −0.800 (−6.620, 5.020) | −3.050 (−8.870, 2.770) | 1.700 (−2.114, 5.514) | −4.017 (−10.107, 2.074) | 2.583 (−0.782, 5.948) |
DHROM (mm) | 0.721 | 0.795 | 0.775 (−2.364, 3.914) | 0.975 (−2.164, 4.114) | −0.325 (−2.308, 1.658) | 0.250 (−3.043, 3.543) | 0.700 (−1.016, 2.416) |
DWDmin (mm) | 0.313 | 0.017 | −2.550 (−4.313, −0.787) | −1.550 (−3.313, 0.213) | −1.150 (−2.362, 0.062) | −2.900 (−4.742, −1.058) | −0.600 (−1.715, 0.515) |
DWDmax (mm) | 0.016 | 0.107 | 1.250 (0.012, 2.538) | −0.725 (−1.988, 0.538) | −0.225 (−1.005, 0.555) | 0.683 (−0.643, 2.010) | −0.467 (−1.132, 0.199) |
DWDup (mm) | 0.639 | 0.439 | −1.200 (−3.344, 0.944) | −2.250 (−4.394, −0.106) | −1.450 (−2.892, −0.008) | −2.083 (−4.327, 0.160) | −1.183 (−2.499, 0.132) |
DWROM (mm) | 0.215 | 0.649 | 0.325 (−2.127, 2.777) | −1.775 (−4.227, 0.677) | −1.925 (−3.341, −0.509) | −1.450 (−4.035, 1.135) | −0.800 (−1.956, 0.356) |
DPDmin (mm) | 0.895 | 0.859 | 1.000 (−0.941, 2.941) | 0.600 (−1.341, 2.541) | 1.100 (−0.020, 2.220) | 0.800 (−1.246, 2.846) | 1.000 (0.085, 1.915) |
DPDmax (mm) | 0.529 | 0.033 | −1.325 (−2.884, 0.234) | −0.625 (−2.184, 0.934) | −1.475 (−2.596, −0.354) | −2.017 (−3.641, −0.393) | −0.267 (−1.315, 0.781) |
DPDup (mm) | 0.999 | 0.230 | −0.350 (−3.056, 2.356) | −0.400 (−3.106, 2.306) | −0.400 (−1.962, 1.162) | −1.333 (−4.185, 1.519) | 0.567 (−0.709, 1.842) |
DPROM (mm) | 0.091 | 0.869 | −0.100 (−2.293, 2.093) | 1.800 (−0.393, 3.993) | −0.800 (−2.235, 0.635) | 0.400 (−1.899, 2.699) | 0.200 (−1.094, 1.494) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bark, C.; Reilly, P.; Weller, R.; Pfau, T. Inertial Sensor-Based Quantification of Movement Symmetry in Trotting Warmblood Show-Jumping Horses after “Limb-by-Limb” Re-Shoeing of Forelimbs with Rolled Rocker Shoes. Sensors 2024, 24, 4848. https://doi.org/10.3390/s24154848
Bark C, Reilly P, Weller R, Pfau T. Inertial Sensor-Based Quantification of Movement Symmetry in Trotting Warmblood Show-Jumping Horses after “Limb-by-Limb” Re-Shoeing of Forelimbs with Rolled Rocker Shoes. Sensors. 2024; 24(15):4848. https://doi.org/10.3390/s24154848
Chicago/Turabian StyleBark, Craig, Patrick Reilly, Renate Weller, and Thilo Pfau. 2024. "Inertial Sensor-Based Quantification of Movement Symmetry in Trotting Warmblood Show-Jumping Horses after “Limb-by-Limb” Re-Shoeing of Forelimbs with Rolled Rocker Shoes" Sensors 24, no. 15: 4848. https://doi.org/10.3390/s24154848