A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement
Abstract
1. Introduction
2. Hybrid Metadetector Design
3. Entangled State Measurement
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwiat, P.G.; Mattle, K.; Weinfurter, H.; Zeilinger, A.; Sergienko, A.V.; Shih, Y.H. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 1995, 75, 4337–4341. [Google Scholar] [CrossRef] [PubMed]
- Kwiat, P.G.; Waks, E.; White, A.G.; Appelbaum, I.; Eberhard, P.H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 1999, 60, R773–R776. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Ma, X.; Cui, L.; Ou, Z.Y.; Yu, D. All-fiber source of frequency-entangled photon pairs. Phys. Rev. A 2009, 79, 033817. [Google Scholar] [CrossRef]
- Agnew, M.; Salvail, J.Z.; Leach, J.; Boyd, R.W. Generation of orbital angular momentum Bell states and their verification via accessible nonlinear witnesses. Phys. Rev. Lett. 2013, 111, 030402. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Zhang, W.; Tang, J.; Liu, Y.; Xia, Z.L.; Liu, Y.S.; Lu, Y.Q. Photonic entanglement based on nonlinear metamaterials. Laser Photonics Rev. 2020, 14, 1900146. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Krenn, M.; Malik, M.; Erhard, M.; Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Philos. Trans. R. Soc. A 2017, 375, 20150442. [Google Scholar] [PubMed]
- Steinlechner, F.; Ecker, S.; Fink, M.; Liu, B.; Bavaresco, J.; Huber, M.; Scheidl, T.; Ursin, R. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 2017, 8, 15971. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Da Lio, B.; Bacco, D.; Oxenløwe, L.K. High-dimensional quantum communication: Benefits, progress, and future challenges. Adv. Quantum Technol. 2019, 2, 1900038. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Ming, Y.; Intaravanne, Y.; Ahmed, H.; Kenney, M.; Lu, Y.Q.; Chen, X. Creating composite vortex beams with a single geometric metasurface. Adv. Mater. 2022, 34, 2109714. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Leach, J.; Slussarenko, S.; Piccirillo, B.; Marrucci, L.; Chen, L.; She, W.; Franke-Arnold, S.; Padgett, M.J.; Santamato, E. Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 2010, 82, 022115. [Google Scholar] [CrossRef]
- Tian, H.; Chin, M.L.; Najmaei, S.; Guo, Q.; Xia, F.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560. [Google Scholar] [CrossRef]
- Krasnok, A.; Lepeshov, S.; Alú, A. Nanophotonics with 2D transition metal dichalcogenides. Opt. Express 2018, 26, 15972–15994. [Google Scholar] [CrossRef] [PubMed]
- Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. MoS2 based photodetectors: A review. Sensors 2021, 21, 2758. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, D.; Yap, Y.K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics 2017, 6, 43. [Google Scholar] [CrossRef]
- Vargas-Bernal, R. Electrical properties of two-dimensional materials used in gas sensors. Sensors 2019, 19, 1295. [Google Scholar] [CrossRef]
- Mak, K.F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226. [Google Scholar] [CrossRef]
- Hu, F.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2019, 8, 1901003. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, G.; Ma, W.; Li, P.; Krasnok, A.; Hillenbrand, R.; Alù, A.; Qiu, C.W. Interface nano-optics with van der Waals polaritons. Nature 2021, 597, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dong, S.; Cao, G.; Hu, G. Exciton polaritons in mixed-dimensional transition metal dichalcogenides heterostructures. Opt. Lett. 2020, 45, 4140–4143. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Zhang, W.; Tang, J.; Yang, X.; Liu, Y.S.; Lu, Y.Q. Nonlinear wavy metasurfaces with topological defects for manipulating orbital angular momentum states. ACS Photonics 2021, 8, 1896–1902. [Google Scholar] [CrossRef]
- Ming, Y.; Liu, Y.; Chen, W.; Yan, Y.; Zhang, H. Tailoring nonlinear metamaterials for the controlling of spatial quantum entanglement. Nanomaterials 2022, 12, 4001. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.G.; Li, Z.; Wang, Y.; Zhu, H. Optimal verification of the Bell state and Greenberger–Horne–Zeilinger states in untrusted quantum networks. NPJ Quantum Inf. 2021, 7, 164. [Google Scholar] [CrossRef]
- Berkhout, G.C.G.; Lavery, M.P.J.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 2010, 105, 153601. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chremmos, I.; Chen, Y.; Zhu, J.; Zhang, Y.; Yu, S. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett. 2018, 120, 193904. [Google Scholar] [CrossRef] [PubMed]
- Mirhosseini, M.; Malik, M.; Shi, Z.; Boyd, R.W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 2013, 4, 2781. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Huang, K.; Liu, H.; Qin, F.; Mehmood, M.Q.; Xu, Z.; Hong, M.; Zhang, D.; Teng, J.; Dannera, A.; et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale 2016, 8, 2227–2233. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Li, T.; Zhu, S. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev. 2018, 12, 1700331. [Google Scholar] [CrossRef]
- Feng, F.; Si, G.; Min, C.; Yuan, X.; Somekh, M. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl. 2020, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Wang, X.; Li, C.; He, C.; Wang, Y.; Pan, A.; Maier, S.A. Orbital-angular-momentum-controlled hybrid nanowire circuit. Nano Lett. 2021, 21, 6220–6227. [Google Scholar] [CrossRef] [PubMed]
- Chervy, T.; Azzini, S.; Lorchat, E.; Wang, S.; Gorodetski, Y.; Hutchison, J.A.; Berciaud, S.; Ebbesen, T.W.; Genet, C. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons. ACS Photonics 2018, 5, 1281–1287. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C.Y.; Krasnok, A.; Choi, J.; Shi, J.; Gomez-Diaz, J.S.; Zepeda, A.; Gwo, S.; Shih, C.K.; Alù, A.; et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 2019, 13, 180–184. [Google Scholar] [CrossRef]
- Hu, G.; Hong, X.; Wang, K.; Wu, J.; Xu, H.X.; Zhao, W.; Liu, W.; Zhang, S.; Garcia-Vidal, F.; Wang, B.; et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics 2019, 13, 467–472. [Google Scholar] [CrossRef]
- Lin, J.; Mueller, J.P.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.C.; Capasso, F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013, 340, 331–334. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, P.; Ji, W.; Wei, B.Y.; Lee, C.H.; Lin, T.H.; Hu, W.; Lu, Y.Q. Tailoring the photon spin via light–matter interaction in liquid-crystal-based twisting structures. NPJ Quantum Mater. 2021, 7, 164. [Google Scholar] [CrossRef]
- Alpeggiani, F.; Gong, S.H.; Kuipers, L. Dispersion and decay rate of exciton-polaritons and radiative modes in transition metal dichalcogenide monolayers. Phys. Rev. B 2018, 97, 205436. [Google Scholar]
- Khurgin, J.B. Two-dimensional exciton–polariton—Light guiding by transition metal dichalcogenide monolayers. Optica 2015, 2, 740–742. [Google Scholar] [CrossRef]
- Ming, Y.; Tan, A.H.; Wu, Z.J.; Chen, Z.X.; Xu, F.; Lu, Y.Q. Tailoring entanglement through domain engineering in a lithium niobate waveguide. Sci. Rep. 2014, 4, 4812. [Google Scholar] [CrossRef]
- Shi, B.S.; Wang, F.Y.; Zhai, C.; Guo, G.C. An ultra-bright two-photon source with a type-I bulk periodically poled potassium titanyl phosphate. Opt. Commun. 2008, 281, 3390–3394. [Google Scholar] [CrossRef]
- Kong, L.J.; Li, Y.; Liu, R.; Qi, W.R.; Wang, Q.; Wang, Z.X.; Huang, S.Y.; Si, Y.; Tu, C.; Hu, W.; et al. Complete measurement and multiplexing of orbital angular momentum Bell states. Phys. Rev. A 2019, 100, 023822. [Google Scholar] [CrossRef]
- Bassim, N.; Scott, K.; Giannuzzi, L.A. Recent advances in focused ion beam technology and applications. MRS Bull. 2014, 39, 317–325. [Google Scholar] [CrossRef]
- Yan, X.; Wei, H. Strong plasmon–exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe2. Nanoscale 2020, 12, 9708–9716. [Google Scholar] [CrossRef]
- Dibos, A.M.; Zhou, Y.; Jauregui, L.A.; Scuri, G.; Wild, D.S.; High, A.A.; Taniguchi, T.; Watanabe, K.; Lukin, M.D.; Kim, P.; et al. Electrically tunable exciton–plasmon coupling in a WSe2 monolayer embedded in a plasmonic crystal cavity. Nano Lett. 2019, 19, 3543–3547. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wu, J.; Li, X.; Zhou, Y.; Yu, Z.; Guo, Y.; Wu, J.; Lin, Y.; Li, Z.; Wu, X.; et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 2017, 139, 9019–9025. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Tan, S.J.R.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 2017, 139, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Ko, T.J.; Wang, M.; Yoo, C.; Okogbue, E.; Islam, M.A.; Li, H.; Shawkat, M.S.; Han, S.S.; Oh, K.H.; Jung, Y. Large-area 2D TMD layers for mechanically reconfigurable electronic devices. J. Phys. D Appl. Phys. 2020, 53, 313002. [Google Scholar] [CrossRef]
- Ming, Y.; Wu, Z.J.; Wu, H.; Xu, F.; Lu, Y.Q. Surface plasmon interferometer based on wedge metal waveguide and its sensing applications. IEEE Photonics J. 2012, 4, 291–299. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- Ocelic, N.; Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater. 2004, 3, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Wu, Z.J.; Tan, A.H.; Hu, X.K.; Xu, F.; Lu, Y.Q. Quantum entanglement based on surface phonon polaritons in condensed matter systems. AIP Adv. 2013, 3, 042122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, Y. A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement. Sensors 2024, 24, 4817. https://doi.org/10.3390/s24154817
Ming Y. A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement. Sensors. 2024; 24(15):4817. https://doi.org/10.3390/s24154817
Chicago/Turabian StyleMing, Yang. 2024. "A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement" Sensors 24, no. 15: 4817. https://doi.org/10.3390/s24154817
APA StyleMing, Y. (2024). A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement. Sensors, 24(15), 4817. https://doi.org/10.3390/s24154817