Wearable Alcohol Monitoring Device for the Data-Driven Transcutaneous Alcohol Diffusion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Skin Epidermis Anatomy of Humans
2.2. Design of PEM Fuel Cell Sensor
2.3. Fabrication of the PEMFC Sensor and the Construction of the Transcutaneous Alcohol Monitoring Device
2.4. Working Mechanism of PEM Fuel Cell-Based Alcohol Monitoring Device
2.5. Measurement Protocols of Blood Alcohol Content (BAC) from the Human Wrist Skin
2.6. Measurement of the Skin Thickness
2.7. Computational Model and Its Application
3. Results
3.1. The Profile of the %BAC Data from Different Human Subjects
3.2. Application to Subject Data
3.3. Profile Shapes of Input Concentration
3.4. Optimization of Input Concentration Profiles and the Comparison of the Exponential Linear Model and Hoerl
3.5. Model Application Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pizon, A.F.; Becker, C.E.; Bikin, D. The clinical significance of variations in ethanol toxicokinetics. J. Med. Toxicol. 2007, 3, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Beazell, J.M.; Ivy, A.C. The Influence of Alcohol on the Digestive Tract; A Review. J. Stud. Alcohol Drug 1940, 1, 45–73. [Google Scholar] [CrossRef]
- Swift, R.M. Direct measurement of alcohol and its metabolites. Addiction 2003, 98 (Suppl. S2), 73–80. [Google Scholar] [CrossRef] [PubMed]
- Zakhari, S. Overview: How is alcohol metabolized by the body? Alcohol Res. Health 2006, 29, 245–254. [Google Scholar] [PubMed]
- Gillen, A.L.; Jason, C. Life Is in the Blood; Faculty Publications and Presentations, Department of Biology and Chemistry, Liberty University: Lynchburg, VA, USA, 2019; p. 148. [Google Scholar]
- Raskin, R.E. Skin and subcutaneous tissue. In Canine and Feline Cytology: A Color Atlas and Interpretation Guide; Elsevier: Amsterdam, The Netherlands, 2015; pp. 34–90. [Google Scholar]
- Thatcher, G.W. Physiology of the Skin. Ph.D. Thesis, University of Nebraska Medical Center, Omaha, NE, USA, 1946. [Google Scholar]
- Dougherty, D.M.; Charles, N.E.; Acheson, A.; John, S.; Furr, R.M.; Hill-Kapturczak, N. Comparing the detection of transdermal and breath alcohol concentrations during periods of alcohol consumption ranging from moderate drinking to binge drinking. Exp. Clin. Psychopharmacol. 2012, 20, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Marques, P.R.; McKnight, A.S. Field and laboratory alcohol detection with 2 types of transdermal devices. Alcohol. Clin. Exp. Res. 2009, 33, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Fairbairn, C.E.; Gurrieri, L.; Caumiant, E.P. Validating transdermal alcohol biosensors: A meta-analysis of associations between blood/breath-based measures and transdermal alcohol sensor output. Addiction 2022, 117, 2805–2815. [Google Scholar] [CrossRef] [PubMed]
- Brobbin, E.; Deluca, P.; Hemrage, S.; Drummond, C. Accuracy of Wearable Transdermal Alcohol Sensors: Systematic Review. J. Med. Internet Res. 2022, 24, e35178. [Google Scholar] [CrossRef] [PubMed]
- Jalal, A.H.; Umasankar, Y.; Gonzalez, P.J.; Alfonso, A.; Bhansali, S. Multimodal technique to eliminate humidity interference for specific detection of ethanol. Biosens. Bioelectron. 2017, 87, 522–530. [Google Scholar] [CrossRef]
- Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 2016, 1, 1011–1019. [Google Scholar] [CrossRef]
- Jalal, A.H.; Umasankar, Y.; Pretto, E.A., Jr.; Bhansali, S. A wearable micro-fuel cell sensor for the determination of blood alcohol content (BAC): A multivariate regression model approach. ISSS J. Micro Smart Syst. 2020, 9, 131–142. [Google Scholar] [CrossRef]
- Marques, P.R.; McKnight, A.S. Evaluating Transcutaneous Alcohol Measuring Device; National Highway Traffic Safety Administration: Washington, DC, USA, 2007; pp. 1–86. [Google Scholar]
- Peck, R.C.; Gebers, M.A.; Voas, R.B.; Romano, E. The relationship between blood alcohol concentration (BAC), age, and crash risk. J. Saf. Res. 2008, 39, 311–319. [Google Scholar] [CrossRef]
- Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, Skin (Integument), Epidermis; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Castellano-Pellicena, I.; Morrison, C.G.; Bell, M.; O’Connor, C.; Tobin, D.J. Melanin distribution in human skin: Influence of cytoskeletal, polarity, and centrosome-related machinery of stratum basale keratinocytes. Int. J. Mol. Sci. 2021, 22, 3143. [Google Scholar] [CrossRef] [PubMed]
- Ugel, A.R.; Idler, W. Stratum granulosum: Dissection from cattle hoof epidermis. J. Investig. Dermatol. 1970, 55, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Ollivier, F.J.; Samuelson, D.A.; Brooks, D.E.; Lewis, P.A.; Kallberg, M.E.; Komáromy, A.M. Comparative morphology of the tapetum lucidum (among selected species). Vet. Ophthalmol. 2004, 7, 11–22. [Google Scholar] [CrossRef]
- Jalal, A.H.; Umasankar, Y.; Ahmed, M.A.; Pretto, E.A.; Bhansali, S. Towards a wearable fuel cell sensor for transdermal monitoring of isoflurane–an anesthetic. Anal. Methods 2019, 11, 2007–2012. [Google Scholar] [CrossRef]
- Umasankar, Y.; Jalal, A.H.; Gonzalez, P.J.; Chowdhury, M.; Alfonso, A.; Bhansali, S. Wearable alcohol monitoring device with auto-calibration ability for high chemical specificity. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; pp. 353–358. [Google Scholar]
- Spiegel, C. Mathematical Modeling of Polymer Exchange Membrane Fuel Cells. Ph.D. Dissertation, University of South Florida, Tampa, FL, USA, 2008; pp. 1–354. [Google Scholar]
- Sanjid, A.; Banerjee, P.C.; Raman, R.S. Multilayer graphene coating for corrosion resistance of Monel 400 alloy in chloride environment. Surf. Coat. Technol. 2019, 370, 227–234. [Google Scholar] [CrossRef]
- Kulikovsky, A.A. Potentials near a curved anode edge in a PEM fuel cell: Analytical solution for placing a reference electrode. J. Electrochem. Soc. 2015, 162, F1191–F1198. [Google Scholar] [CrossRef]
- Kulikovsky, A.A.; Berg, P. Positioning of a reference electrode in a PEM fuel cell. J. Electrochem. Soc. 2015, 162, F843–F848. [Google Scholar] [CrossRef]
- Kulikovsky, A.A. Reference Electrode Positioning in PEM Fuel Cell at a Parabolic Anode Tip. Fuel Cells 2020, 20, 527–530. [Google Scholar] [CrossRef]
- He, W.; Nguyen, T.V. Edge effects on reference electrode measurements in PEM fuel cells. J. Electrochem. Soc. 2004, 151, A185. [Google Scholar] [CrossRef]
- Haji, S. Analytical modeling of PEM fuel cell I–V curve. Renew. Energy 2011, 36, 451–458. [Google Scholar] [CrossRef]
- Wasmus, S.; Küver, A. Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 1999, 461, 14–31. [Google Scholar] [CrossRef]
- Sedesheva, Y.S.; Ivanov, V.S.; Wozniak, A.I.; Yegorov, A.S. Proton-Exchange membranes based on sulfonated polymers. Orient. J. Chem. 2016, 32, 2283–2296. [Google Scholar] [CrossRef]
- Jalal, A.H.; Umasankar, Y.; Chowdhury, M.; Bhansali, S. A fuel cell based sensing platform for selective detection of acetone in hyperglycemic patients. ECS Trans. 2017, 80, 1369. [Google Scholar] [CrossRef]
- Jalal, A.H.; Umasankar, Y.; Bhansali, S. Development and characterization of fuel cell sensor for potential transdermal ethanol sensing. ECS Trans. 2016, 72, 25. [Google Scholar] [CrossRef]
- Keithley, R.B.; Heien, M.L.; Wightman, R.M. Multivariate concentration determination using principal component regression with residual analysis. Trends Anal. Chem. 2009, 28, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Keithley, R.B.; Wightman, R.M. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry. ACS Chem. Neurosci. 2011, 21, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Acharya, R.; Zhu, X.; Köse, M.E.; Schanze, K.S. Pyrophosphate sensor based on principal component analysis of conjugated polyelectrolyte fluorescence. ACS Omega 2016, 1, 648–655. [Google Scholar] [CrossRef]
- Gamella, M.; Campuzano, S.; Manso, J.; González de Rivera, G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. A novel noninvasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Analytica Chimica Acta 2014, 806, 1–7. [Google Scholar] [CrossRef]
- Jain, S.M.; Pandey, K.; Lahoti, A.; Rao, P.K. Evaluation of skin and subcutaneous tissue thickness at insulin injection sites in Indian, insulin naïve, type-2 diabetic adult population. Indian J. Endocrinol. Metab. 2013, 17, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Uz, C.; Umay, E. Ultrasonographic measurement of median nerve and wrist skin thickness in patients with carpal tunnel syndrome: Relationship with clinical, electrophysiologic and functionality. Acta Orthop. Belg. 2023, 89, 167–172. [Google Scholar] [CrossRef] [PubMed]
- COMSOL Multiphysics, Version 6; COMSOL, AB: Stockholm, Sweden, 2022. Available online: www.comsol.com (accessed on 7 May 2022).
- Anderson, J.C.; HIastala, M.P. The kinetics of transdermal ethanol exchange. J. Appl. Physiol. 2006, 100, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Barnett, N.P.; Meade, E.B.; Glynn, T.R. Predictors of detection of alcohol use episodes using a transdermal alcohol sensor. Exp. Clin. Psychopharmacol. 2014, 22, 86–96. [Google Scholar] [CrossRef]
- McPherson, S.; Lucey, M.R.; Moriarty, K.J. Decompensated alcohol related liver disease: Acute management. Proc. BMJ 2016, 352, i124. [Google Scholar] [CrossRef]
- Alam, F.; Jalal, A.H.; Pala, N. Selective Detection of Alcohol Through Ethyl-Glucuronide Immunosensor Based on 2D Zinc Oxide Nanostructures. IEEE Sens. J. 2019, 19, 3984–3992. [Google Scholar] [CrossRef]
- Kendrick, S.; Day, C. Risk factors for alcohol-related liver disease. In Alcohol Abuse and Liver Disease; Wiley: Chichester, UK, 2015; pp. 47–53. [Google Scholar]
Subject ID | Avg. Skin-Fat Thickness (cm) | Avg. Skin Thickness (cm) |
---|---|---|
S1 | 1.217 | 0.2 |
S2 | 1.633 | 0.27 |
S3 | 0.983 | 0.163 |
S4 | 0.897 | 0.15 |
S5 | 0.82 | 0.136 |
S6 | 0.413 | 0.07 |
S7 | 0.587 | 0.097 |
S8 | 0.56 | 0.09 |
Layer | Thickness (cm) | Molecular Diffusivity (cm2/s) |
---|---|---|
stratum basale | 0.001 | 6.25 × 10−6 |
stratum spinosum | 0.002 | 5.00 × 10−6 |
stratum granulosum and lucidum | 0.0026 | 3.75 × 10−6 |
stratum corneum | 0.0015 | 5.00 × 10−10 |
air gap | 0.1 | 5.00 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalal, A.H.; Arbabi, S.; Ahad, M.A.; Alam, F.; Ahmed, M.A. Wearable Alcohol Monitoring Device for the Data-Driven Transcutaneous Alcohol Diffusion Model. Sensors 2024, 24, 4233. https://doi.org/10.3390/s24134233
Jalal AH, Arbabi S, Ahad MA, Alam F, Ahmed MA. Wearable Alcohol Monitoring Device for the Data-Driven Transcutaneous Alcohol Diffusion Model. Sensors. 2024; 24(13):4233. https://doi.org/10.3390/s24134233
Chicago/Turabian StyleJalal, Ahmed Hasnain, Sepehr Arbabi, Mohammad A. Ahad, Fahmida Alam, and Md Ashfaq Ahmed. 2024. "Wearable Alcohol Monitoring Device for the Data-Driven Transcutaneous Alcohol Diffusion Model" Sensors 24, no. 13: 4233. https://doi.org/10.3390/s24134233
APA StyleJalal, A. H., Arbabi, S., Ahad, M. A., Alam, F., & Ahmed, M. A. (2024). Wearable Alcohol Monitoring Device for the Data-Driven Transcutaneous Alcohol Diffusion Model. Sensors, 24(13), 4233. https://doi.org/10.3390/s24134233