Micro-Ring Resonator Assisted Photothermal Spectroscopy of Water Vapor
Abstract
1. Introduction
2. Sensing Principle
3. Fabrication
4. Measurement Setup
5. Results
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, X.; Lengignon, C.; Tao, W.; Zhao, W.; Wysocki, G.; Fertein, E.; Coeur, C.; Cassez, A.; Croize, L.; Chen, W.; et al. Pho-tonic sensing of the atmosphere by absorption spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1300–1316. [Google Scholar] [CrossRef]
- Leifer, I.; Melton, C.; Tratt, D.M.; Buckland, K.N.; Clarisse, L.; Coheur, P.; Frash, J.; Gupta, M.; Johnson, P.D.; Leen, J.B.; et al. Re-mote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA. Environ. Pollut. 2017, 221, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, M.; Lin, M.; Xu, Y.; Ye, X.; Kao, C.M.; Chen, S. A comparison of CH4, N2O and CO2 emissions from three different cover types in a municipal solid waste landfill. J. Air Waste Manag. Assoc. 2017, 67, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Nadimi, J.E.; Przybyła, G.; Lewandowski, M.T.; Adamczyk, W. Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine. J. Energy Inst. 2023, 107, 101158. [Google Scholar] [CrossRef]
- Fries, D.; Clemens, N.T.; Varghese, P. Time Dynamics of an Inductively Coupled Plasma Torch. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, Online, 3–7 January 2022. [Google Scholar] [CrossRef]
- Metcalfe, G.D.; Alahmari, S.; Smith, T.W.; Hippler, M. Cavity-enhanced Raman and Helmholtz resonator photoacoustic spectroscopy to monitor the mixed sugar metabolism of E. coli. Anal. Chem. 2019, 91, 13096–13104. [Google Scholar] [CrossRef] [PubMed]
- Patimisco, P.; Scamarcio, G.; Tittel, F.; Spagnolo, V. Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef] [PubMed]
- Krzempek, K. A Review of Photothermal Detection Techniques for Gas Sensing Applications. Appl. Sci. 2019, 9, 2826. [Google Scholar] [CrossRef]
- Capeloto, O.A.; Zanuto, V.S.; Lukasievicz, G.V.B.; Malacarne, L.C.; Bialkowski, S.E.; Požar, T.; Astrath, N.G.C. Generation and detection of thermoelastic waves in metals by a photothermal mirror method. Appl. Phys. Lett. 2016, 109, 191908. [Google Scholar] [CrossRef]
- Capeloto, O.A.; Zanuto, V.S.; Camargo, V.G.; Flizikowski, G.A.S.; Morais, F.A.P.; Lukasievicz, G.V.B.; Herculano, L.S.; Belançon, M.P.; Astrath, N.G.C.; Malacarne, L.C. Induction and detection of pressure waves by pulsed thermal lens technique in water–ethanol mixtures. Appl. Opt. 2021, 60, 4029–4033. [Google Scholar] [CrossRef]
- Waclawek, J.P.; Kristament, C.; Moser, H.; Lendl, B. Balanced-detection interferometric cavity-assisted photothermal spectroscopy. Opt. Express 2019, 27, 12183–12195. [Google Scholar] [CrossRef]
- Krzempek, K.; Jaworski, P.; Tenbrake, L.; Giefer, F.; Meschede, D.; Hofferberth, S.; Pfeifer, H. Photothermal gas detection using a miniaturized fiber Fabry-Perot cavity. Sens. Actuators B Chem. 2024, 401, 135040. [Google Scholar] [CrossRef]
- Njegovec, M.; Javornik, J.; Pevec, S.; Budinski, V.; Gregorec, T.; Lang, B.; Tanzer, M.; Bergmann, A.; Đonlagić, D. Gas sensing system based on an all-fiber photothermal microcell. IEEE Sens. J. 2024, 1. [Google Scholar] [CrossRef]
- Yao, C.; Shi, Z.; Li, Z.; Zhao, X. Fabry-Pérot photothermal interferometry in a hollow-core antiresonant fiber for gas detection in mid-infrared. Sens. Actuators B Chem. 2024, 414, 135930. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Vasiliev, A.; Malik, A.; Muneeb, M.; Kuyken, B.; Baets, R.; Roelkens, G. On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators. ACS Sens. 2016, 1, 1301–1307. [Google Scholar] [CrossRef]
- Ricchiuti, G.; Walsh, A.; Mendoza-Castro, J.A.; Vorobev, A.S.; Kotlyar, M.; Lukasievicz, G.V.B.; Iadanza, S.; Grande, M.; Lendl, B.; O’Faolain, L. Photo-thermal Spectroscopy On-Chip Sensor for the Measurement of a PMMA Film Using a Silicon Nitride Micro-Ring Resonator and an External Cavity Quantum Cascade La-ser. Nanophotonics 2024, 13, 2417–2427. [Google Scholar] [CrossRef]
- McNab, S.; Moll, N.; Vlasov, Y. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 2003, 11, 2927–2939. [Google Scholar] [CrossRef]
- Shen, L.; Ren, H.; Huang, M.; Wu, D.; Peacock, A.C. A review of nonlinear applications in silicon optical fibers from telecom wavelengths into the mid-infrared spectral region. Opt. Commun. 2020, 463, 125437. [Google Scholar] [CrossRef]
- Hasan, G.M.; Liu, P.; Hasan, M.; Ghorbani, H.; Rad, M.; Bernier, E.; Hall, T.J. Ring Resonator Gap Determination Design Rule and Parameter Extraction Method for Sub-GHz Resolution Whole C-Band Si3N4 Integrated Spectrometer. Photonics 2022, 9, 651. [Google Scholar] [CrossRef]
- Loi, R.; Iadanza, S.; Roycroft, B.; O’Callaghan, J.; Liu, L.; Thomas, K.; Gocalinska, A.; Pelucchi, E.; Farrell, A.; Kelleher, S.; et al. Edge-Coupling of O-Band InP Etched-Facet Lasers to Polymer Wave-guides on SOI by Micro-Transfer-Printing. IEEE J. Quantum Electron. 2020, 56, 6400108. [Google Scholar] [CrossRef]
- Yan, Y.; Feng, H.; Wang, C.; Ren, W. On-chip photothermal gas sensor based on a lithium niobate rib waveguide. Sens. Actuators B Chem. 2024, 405, 135392. [Google Scholar] [CrossRef]
- Løkken, T.V. Comparison of hygrometers for monitoring of water vapour in natural gas. J. Nat. Gas Sci. Eng. 2012, 6, 24–36. [Google Scholar] [CrossRef]
- Kolle, J.M.; Fayaz, M.; Sayari, A. Understanding the effect of water on CO2 adsorption. Chem. Rev. 2021, 121, 7280–7345. [Google Scholar] [CrossRef]
- Ghysels, M.; Riviere, E.D.; Khaykin, S.; Stoeffler, C.; Amarouche, N.; Pomereau, J.-P.; Held, G.; Durry, G. Intercomparison of in situ water vapor bal-loon-borne measurements from Pico-SDLA H2O and FLASH-B in the tropical UTLS. Atmos. Meas. Tech. 2016, 9, 1207–1219. [Google Scholar] [CrossRef]
- Ma, Z.; Fei, T.; Zhang, T. An overview: Sensors for low humidity detection. Sens. Actuators B Chem. 2023, 376, 133039. [Google Scholar] [CrossRef]
- Witt, F.; Nwaboh, J.; Bohlius, H.; Lampert, A.; Ebert, V. Towards a Fast, Open-Path Laser Hygrometer for Airborne Eddy Covariance Measurements. Appl. Sci. 2021, 11, 5189. [Google Scholar] [CrossRef]
- Bialkowski, S.E.; Astrath, N.G.C.; Proskurnin, M.A. Photothermal Spectroscopy Methods for Chemical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Shoji, T.; Tsuchizawa, T.; Watanabe, T.; Yamada, K.; Morita, H. Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres. Electron. Lett. 2002, 38, 1669–1670. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skiner, F.M. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer. 2022, 277, 107949. [Google Scholar]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 12004. [Google Scholar] [CrossRef]
- Moser, H.; Pölz, W.; Waclawek, J.P.; Ofner, J.; Lendl, B. Implementation of a quantum cascade laser based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream. Anal. Bioanal. Chem. 2017, 409, 729–773. [Google Scholar] [CrossRef]
- Twomey, C.F.; Biagi, G.; Ruth, A.A.; Giglio, M.; Spagnolo, V.; O’Faolain, L.; Walsh, A.J. Evanescent wave quartz-enhanced photoacoustic spectroscopy employing a side-polished fiber for methane sensing. Photoacoustics 2024, 36, 100586. [Google Scholar] [CrossRef]
- Menduni, G.; Zifarelli, A.; Kniazeva, E.; Russo, S.D.; Ranieri, A.C.; Ranieri, E.; Patimisco, P.; Sampaolo, A.; Giglio, M.; Manassero, F.; et al. Measurement of methane, nitrous oxide and ammonia in atmosphere with a compact quartz-enhanced photoacoustic sensor. Sens. Actuators B Chem. 2023, 375, 132953. [Google Scholar] [CrossRef]
- Waclawek, J.P.; Bauer, V.C.; Moser, H.; Lendl, B. 2f-wavelength modulation Fabry-Perot photothermal interferometry. Opt. Express 2016, 24, 28958–28967. [Google Scholar] [CrossRef]
- Spagnolo, V.; Patimisco, P.; Tittel, F.K. 15-Quartz-enhanced photoacoustic spectroscopy for gas sensing applications. In Mid-Infrared Optoelectronics; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, UK, 2020; pp. 597–659. [Google Scholar]
- Ji, X.; Okawachi, Y.; Gil-Molina, A.; Corato-Zanarella, M.; Roberts, S.; Gaeta, A.L.; Lipson, M. Ultra-Low-Loss Silicon Nitride Photonics Based on Deposited Films Compatible with Foundries. Laser Photonics Rev. 2023, 17, 2200544. [Google Scholar] [CrossRef]
- Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling strategies for silicon photonics integrated chips Invited. Photon. Res. 2019, 7, 201–239. [Google Scholar] [CrossRef]
- Mapranathukaran, J.J.; Biagi, G.; Walsh, A.; Záruba, P.; Darby, S.; Lendl, B.; O’Faolain, L.; Kotlyar, M. Photonic integrated circuit assisted Photo-Thermal Spectroscopy. In Proceedings of the British and Irish Conference on Optics and Photonics 2023 (Optica Publishing Group 2023), London, UK, 13–15 December 2023; p. W3B.4. [Google Scholar]
- Iadanza, S.; Mendoza-Castro, J.H.; Oliveira, T.; Butler, S.M.; Tedesco, A.; Giannino, G.; Lendl, B.; Grande, M.; O’Faolain, L. High-Q asymmetrically cladded silicon nitride 1D photonic crystals cavities and hybrid external cavity lasers for sensing in air and liquids. Nanophotonics 2022, 11, 4183–4196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyar, M.V.; Mapranathukaran, J.J.; Biagi, G.; Walsh, A.; Lendl, B.; O’Faolain, L. Micro-Ring Resonator Assisted Photothermal Spectroscopy of Water Vapor. Sensors 2024, 24, 3679. https://doi.org/10.3390/s24113679
Kotlyar MV, Mapranathukaran JJ, Biagi G, Walsh A, Lendl B, O’Faolain L. Micro-Ring Resonator Assisted Photothermal Spectroscopy of Water Vapor. Sensors. 2024; 24(11):3679. https://doi.org/10.3390/s24113679
Chicago/Turabian StyleKotlyar, Maria V., Jenitta Johnson Mapranathukaran, Gabriele Biagi, Anton Walsh, Bernhard Lendl, and Liam O’Faolain. 2024. "Micro-Ring Resonator Assisted Photothermal Spectroscopy of Water Vapor" Sensors 24, no. 11: 3679. https://doi.org/10.3390/s24113679
APA StyleKotlyar, M. V., Mapranathukaran, J. J., Biagi, G., Walsh, A., Lendl, B., & O’Faolain, L. (2024). Micro-Ring Resonator Assisted Photothermal Spectroscopy of Water Vapor. Sensors, 24(11), 3679. https://doi.org/10.3390/s24113679