Measuring DNI with a New Radiometer Based on an Optical Fiber and Photodiode
Abstract
:1. Introduction
2. System Description
3. Calibration Process
- Eref (λ) is a spectral irradiance pattern of the solar beam (taken from ASTM G173-03 Reference Spectra derived from SMARTS [28]);
- is the responsivity of the semiconductor photodiode;
- λi is the wavelength selected in the OPM to convert the current into optical power;
- is the attenuation coefficient per length unit of the optical fiber;
- L is the length of the fiber-optic cable from the tip exposed to the solar beam to the photodiode detector.
4. Experimental Measurements
4.1. Setup Description
4.2. Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive 2010/31/EU of the European Parliament and of the Council of 19 of May 2010 on Energy Performance of Buildings. OJ L 153, 18.6.2010. pp. 13–35. Available online: https://eur-lex.europa.eu/eli/dir/2010/31/oj (accessed on 25 April 2024).
- Directive 2018/844/EU of the European Parliament and of the Council of 30 May 2018. PE/4/2018/REV/1 OJ L 156, 19.6.2018. pp. 75–91. Available online: https://eur-lex.europa.eu/eli/dir/2018/844/oj (accessed on 25 April 2024).
- Renewables 2023 Global Status Report. A Comprehensive Annual Overview of the State of Renewable Energy. REN21 2023. Available online: https://www.ren21.net/gsr-2023/ (accessed on 25 April 2024).
- International Energy Agency. Photovoltaic Power System Program Task 16 Solar Resource for High Penetration and Large Scale Applications. In Best Practices Handbook for the Collection and Use of Resource Data for Solar Energy Applications, 3rd ed.; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2021. [Google Scholar]
- Abedinia, O.; Zareneijad, M.; Doranehgard, M.H.; Fathi, G.; Ghadimi, N. Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. J. Clean. Prod. 2019, 215, 878–889. [Google Scholar] [CrossRef]
- Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renné, D.; Sengupta, M.; Wald, L.; et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 2014, 110, 561–577. [Google Scholar] [CrossRef]
- ISO 9488:2022; Solar Energy—Vocabulary. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/obp/ui/#iso:std:iso:9488:ed-2:v1:en (accessed on 15 April 2024).
- ISO 9060:2018; Solar Energy—Specification and Classification of Instruments for Measuring Hemispherical Solar and Direct Solar Radiation. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/es/contents/data/standard/06/74/67464.html (accessed on 15 April 2024).
- Sengupta, M.; Gotseff, P.; Stoffel, T. Evaluation of photodiode and Thermopile pyranometers for photovoltaic applications. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012. [Google Scholar]
- Balenzategui, J.L.; de Lucas, J.; Cuenca, J.; González-Leiton, A.; Molero, M.; Fabero, F.; Silva, J.P.; Mejuto, E.; Muñoz, R.; Arce, A.; et al. Characterization of absolute cavity radiometers for traceability to SI of solar irradiance. Meas. Sci. Technol. 2022, 33, 115009. [Google Scholar] [CrossRef]
- Shenoy, V.; Tripathi, P.; Mahadik, A.; Nalawade, P.; Mahajan, A. Devices Used for Measuring Solar Radiation—A Review. In Proceedings of the International Conference on Innovative and Advanced Technologies in Engineering, Mumbai, India, 21–23 March 2018; pp. 1–4. [Google Scholar]
- Anagha, M.J. A Survey of Solar Irradiance Measurement Techniques. In Proceedings of the IEEE International Conference on Computational Intelligence and Computer Research, Madurai, Tamil Nadu, India, 13–15 December 2018. [Google Scholar]
- Hameed, W.I.; Sawadi, B.A.; Al-Kamil, S.J.; Al-Radhi, M.S.; Al-Yasir, Y.I.A.; Saleh, A.L.; Abd-Alhameed, R.A. Prediction of solar irradiance based on Artificial Neural Networks. Inventions 2019, 4, 45. [Google Scholar] [CrossRef]
- Möllenkamp, J.; Beikircher, T.; Häberle, A. Recalibration of SPN1 pyranometers against pyrheliometer and its relevance or the evaluation of concentrating solar process heat plants. Sol. Energy 2020, 197, 344–358. [Google Scholar] [CrossRef]
- Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T. Intercomparison of 51 radiometers for determining global horizontal irradiance and direct to normal irradiance measurements. Sol. Energy 2016, 133, 372–393. [Google Scholar] [CrossRef]
- Mujahid, A.M.; Alamoud, A.R.M. An easily designed and constructed photovoltaic pyrheliometer. Sol. Wind. Technol. 1988, 5, 127–130. [Google Scholar] [CrossRef]
- Cheng, S.X.; Hu, H.P.; Chen, L. Two simple and novel pyrheliometers. Sol. Energy 1997, 61, 203–210. [Google Scholar] [CrossRef]
- King, D.L. Silicon-Photodiode Pyranometers: Operational Characteristics, Historical Experiences and New Calibration Procedures. In Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, CA, USA, 29 September–3 October 1997. [Google Scholar]
- Martínez, M.A.; Andújar, J.M.; Enrique, J.M. A New and Inexpensive Pyranometer for the Visible Spectral Range. Sensors 2009, 9, 4615–4634. [Google Scholar] [CrossRef] [PubMed]
- Cwirko, J. Comparative tests of temperature effects on the performance of GaN and SiC photodiodes. Metrol. Meas. Syst. 2015, 22, 119–126. [Google Scholar] [CrossRef]
- Aranoutakis, G.E.; Marques-Hueso, J.; Mallik, T.K.; Richards, B.S. Coupling of sunlight into optical fibres and spectral dependende for solar energy applications. Sol. Energy 2013, 93, 235–243. [Google Scholar] [CrossRef]
- Corrons, A. Solar irradiance measurements by means of optical fibers and silicon detectors. Appl. Opt. 1979, 18, 2902–2904. [Google Scholar] [CrossRef] [PubMed]
- Bajons, P.; Wernhart, U.; Zeiler, H. A sensor element for direct radiation measurement. Sol. Energy 1998, 63, 125–134. [Google Scholar] [CrossRef]
- ISO 9059:1990; Solar Energy—Calibration of Field Pyrheliometers by Comparison to a Reference Pyrheliometer. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/16628.html (accessed on 15 April 2024).
- Tatsiankou, V.; Hinzer, K.; Haysom, J.; Schriemer, H.; Emery, K.; Beal, R. Design principles and field performance of a solar spectral irradiance meter. Sol. Energy 2016, 133, 94–102. [Google Scholar] [CrossRef]
- Gröbner, J.; Kouremeti, N. The precision solar spectroradiometer (PSR) for direct solar irradiance measurements. Sol. Energy 2019, 185, 199–210. [Google Scholar] [CrossRef]
- Derickson, D. Fiber Optic Test and Measurement. In Hewlett-Packard Professional Books; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- ASTM G173-03(2020); Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/g0173-03r20.html (accessed on 15 April 2024).
- Ferrera-Cobos, F.; Valenzuela, R.X.; Ramírez, L.; Zarzalejo, L.F.; Nouri, B.; Wilbert, S.; García, G. Assessment of the impact of meteorological conditions on pyrheliometer calibration. Sol. Energy 2018, 168, 44–59. [Google Scholar] [CrossRef]
- Cooper, W.D.; Helfrick, A.D. Electronic Instrumentation and Measurement Techniques, 3rd ed.; Prentice Hall Inc.: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
Fiber Model | Core Diameter (µm) | Numerical Aperture | Half-Acceptance Angle |
---|---|---|---|
Thorlabs FG050LGA | 50 | 0.22 | 12.71° |
Thorlabs FG105LCA | 105 | 0.22 | 12.71° |
Thorlabs FG105LVA | 105 | 0.1 | 5.73° |
Thorlabs FP200URT | 200 | 0.5 | 30° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carballar, A.; Rodríguez-Garrido, R.; Jerez, M.; Vera, J.; Granado, J. Measuring DNI with a New Radiometer Based on an Optical Fiber and Photodiode. Sensors 2024, 24, 3674. https://doi.org/10.3390/s24113674
Carballar A, Rodríguez-Garrido R, Jerez M, Vera J, Granado J. Measuring DNI with a New Radiometer Based on an Optical Fiber and Photodiode. Sensors. 2024; 24(11):3674. https://doi.org/10.3390/s24113674
Chicago/Turabian StyleCarballar, Alejandro, Roberto Rodríguez-Garrido, Manuel Jerez, Jonathan Vera, and Joaquín Granado. 2024. "Measuring DNI with a New Radiometer Based on an Optical Fiber and Photodiode" Sensors 24, no. 11: 3674. https://doi.org/10.3390/s24113674
APA StyleCarballar, A., Rodríguez-Garrido, R., Jerez, M., Vera, J., & Granado, J. (2024). Measuring DNI with a New Radiometer Based on an Optical Fiber and Photodiode. Sensors, 24(11), 3674. https://doi.org/10.3390/s24113674