Evaluation of Different Types of Stimuli in an Event-Related Potential-Based Brain–Computer Interface Speller under Rapid Serial Visual Presentation
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Data Acquisition and Signal Processing
2.3. Experimental Conditions
2.4. Procedure
2.5. Evaluation
2.5.1. Performance
2.5.2. ERP Waveform
2.5.3. Subjective Items
2.5.4. Statistical Analyses
3. Results
3.1. Performance
3.2. ERP Waveform
3.3. Subjective Items
4. Discussion
4.1. Performance
4.2. ERP Waveform
4.3. Subjective Items
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T.; Verdini, F. An introductory tutorial on brain–computer interfaces and their applications. Electronics 2021, 10, 560. [Google Scholar] [CrossRef]
- Koch Fager, S.; Fried-Oken, M.; Jakobs, T.; Beukelman, D.R. New and emerging access technologies for adults with complex communication needs and severe motor impairments: State of the science. AAC Augment. Altern. Commun. 2019, 35, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Schnetzer, L.; McCoy, M.; Bergmann, J.; Kunz, A.; Leis, S.; Trinka, E. Locked-in syndrome revisited. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231160872. [Google Scholar] [CrossRef] [PubMed]
- Karikari, E.; Koshechkin, K.A. Review on brain-computer interface technologies in healthcare. Biophys. Rev. 2023, 15, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, S.; Hosseini-Zahraei, S.H.; Tootchi, A.; Guger, C.; Chaibakhsh, Y.; Saberi, A.; Chaibakhsh, A. A review on the performance of brain-computer interface systems used for patients with locked-in and completely locked-in syndrome. Cogn. Neurodyn. 2023. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Heo, D.; Kim, J.; Kim, M.K.; Lee, T.; Park, J.; Kim, H.Y.; Hwang, M.; Kim, L.; et al. A comprehensive dataset for home appliance control using ERP-based BCIs with the application of inter-subject transfer learning. Front. Hum. Neurosci. 2024, 18, 1320457. [Google Scholar] [CrossRef] [PubMed]
- Maslova, O.; Komarova, Y.; Shusharina, N.; Kolsanov, A.; Zakharov, A.; Garina, E.; Pyatin, V. Non-invasive EEG-based BCI spellers from the beginning to today: A mini-review. Front. Hum. Neurosci. 2023, 17, 1216648. [Google Scholar] [CrossRef] [PubMed]
- Allison, B.Z.; Kübler, A.; Jin, J. 30+ years of P300 brain–computer interfaces. Psychophysiology 2020, 57, e13569. [Google Scholar] [CrossRef] [PubMed]
- Acqualagna, L.; Blankertz, B. Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP). Clin. Neurophysiol. 2013, 124, 901–908. [Google Scholar] [CrossRef]
- Won, K.; Kwon, M.; Jang, S.; Ahn, M.; Jun, S.C. P300 Speller Performance Predictor Based on RSVP Multi-feature. Front. Hum. Neurosci. 2019, 13, 261. [Google Scholar] [CrossRef]
- Zang, B.; Lin, Y.; Liu, Z.; Gao, X. A deep learning method for single-trial EEG classification in RSVP task based on spatiotemporal features of ERPs. J. Neural Eng. 2021, 18. [Google Scholar] [CrossRef]
- Klee, D.; Memmott, T.; Oken, B. The Effect of Jittered Stimulus Onset Interval on Electrophysiological Markers of Attention in a Brain–Computer Interface Rapid Serial Visual Presentation Paradigm. Signals 2024, 5, 18–39. [Google Scholar] [CrossRef]
- Brunner, P.; Joshi, S.; Briskin, S.; Wolpaw, J.R.; Bischof, H.; Schalk, G. Does the “P300” speller depend on eye gaze? J. Neural Eng. 2010, 7, 56013. [Google Scholar] [CrossRef] [PubMed]
- Chennu, S.; Alsufyani, A.; Filetti, M.; Owen, A.M.; Bowman, H. The cost of space independence in P300-BCI spellers. J. Neuroeng. Rehabil. 2013, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Won, D.O.; Hwang, H.J.; Kim, D.M.; Müller, K.R.; Lee, S.W. Motion-Based Rapid Serial Visual Presentation for Gaze-Independent Brain-Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Lees, S.; Mccullagh, P.; Maguire, L.; Lotte, F.; Coyle, D. Speed of rapid serial visual presentation of pictures, numbers and words affects event-related potential-based detection accuracy. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jin, J.; Daly, I.; Zhang, Y.; Wang, X.; Cichocki, A. Exploring Combinations of Different Color and Facial Expression Stimuli for Gaze-Independent BCIs. Front. Comput. Neurosci. 2016, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Farwell, L.A.; Donchin, E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 1988, 70, 510–523. [Google Scholar] [CrossRef]
- Kaufmann, T.; Schulz, S.M.; Grünzinger, C.; Kübler, A. Flashing characters with famous faces improves ERP-based brain-computer interface performance. J. Neural Eng. 2011, 8, 056016. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Li, J.; Bai, O. Use of a green familiar faces paradigm improves P300-speller brain-computer interface performance. PLoS ONE 2015, 10, e0130325. [Google Scholar] [CrossRef]
- Li, S.; Jin, J.; Daly, I.; Zuo, C.; Wang, X.; Cichocki, A. Comparison of the ERP-Based BCI Performance Among Chromatic (RGB) Semitransparent Face Patterns. Front. Neurosci. 2020, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, Á.; Medina-Juliá, M.T.; Velasco-Álvarez, F.; Ron-Angevin, R. Different effects of using pictures as stimuli in a P300 brain-computer interface under rapid serial visual presentation or row-column paradigm. Med. Biol. Eng. Comput. 2021, 59, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Álvarez, F.; Sancha-Ros, S.; García-Garaluz, E.; Fernández-Rodríguez, Á.; Medina-Juliá, M.T.T.; Ron-Angevin, R. UMA-BCI Speller: An Easily Configurable P300 Speller Tool for End Users. Comput. Methods Programs Biomed. 2019, 172, 127–138. [Google Scholar] [CrossRef]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef]
- User Reference:P300Classifier. Available online: https://www.bci2000.org/mediawiki/index.php/User_Reference:P300Classifier (accessed on 2 September 2020).
- Ma, Z.; Qiu, T. Performance improvement of ERP-based brain–computer interface via varied geometric patterns. Med. Biol. Eng. Comput. 2017, 55, 2245–2256. [Google Scholar] [CrossRef]
- Blum, S.; Jacobsen, N.S.J.; Bleichner, M.G.; Debener, S. A riemannian modification of artifact subspace reconstruction for EEG artifact handling. Front. Hum. Neurosci. 2019, 13, 141. [Google Scholar] [CrossRef]
- Plechawska-Wójcik, M.; Augustynowicz, P.; Kaczorowska, M.; Zabielska-Mendyk, E.; Zapała, D. The Influence Assessment of Artifact Subspace Reconstruction on the EEG Signal Characteristics. Appl. Sci. 2023, 13, 1605. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; R Core Team R: Vienna, Austria, 2021. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Näätänen, R.; Picton, T.W. N2 and automatic versus controlled processes. Electroencephalogr. Clin. Neurophysiol. Suppl. 1986, 38, 169–186. [Google Scholar] [PubMed]
- Rezeika, A.; Benda, M.; Stawicki, P.; Gembler, F.; Saboor, A.; Volosyak, I. Brain–computer interface spellers: A review. Brain Sci. 2018, 8, 57. [Google Scholar] [CrossRef]
- Ron-Angevin, R.; Medina-Juliá, M.T.; Fernández-Rodríguez, Á.; Velasco-Álvarez, F.; Andre, J.M.; Lespinet-Najib, V.; Garcia, L. Performance Analysis with Different Types of Visual Stimuli in a BCI-Based Speller Under an RSVP Paradigm. Front. Comput. Neurosci. 2021, 14, 587702. [Google Scholar] [CrossRef] [PubMed]
- Reichert, C.; Tellez Ceja, I.F.; Sweeney-Reed, C.M.; Heinze, H.J.; Hinrichs, H.; Dürschmid, S. Impact of Stimulus Features on the Performance of a Gaze-Independent Brain-Computer Interface Based on Covert Spatial Attention Shifts. Front. Neurosci. 2020, 14, 591777. [Google Scholar] [CrossRef]
- Xu, W.; Gao, P.; He, F.; Qi, H. Improving the performance of a gaze independent P300-BCI by using the expectancy wave. J. Neural Eng. 2022, 19, 026036. [Google Scholar] [CrossRef]
- Severens, M.; Van der Waal, M.; Farquhar, J.; Desain, P. Comparing tactile and visual gaze-independent brain-computer interfaces in patients with amyotrophic lateral sclerosis and healthy users. Clin. Neurophysiol. 2014, 125, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jin, J.; Daly, I.; Zuo, C.; Wang, X.; Cichocki, A. Effects of Visual Attention on Tactile P300 BCI. Comput. Intell. Neurosci. 2020, 2020, 6549189. [Google Scholar] [CrossRef] [PubMed]
- Séguin, P.; Maby, E.; Fouillen, M.; Otman, A.; Luauté, J.; Giraux, P.; Morlet, D.; Mattout, J. The challenge of controlling an auditory BCI in the case of severe motor disability. J. Neuroeng. Rehabil. 2024, 21, 9. [Google Scholar] [CrossRef]
- Jin, J.; Allison, B.Z.; Zhang, Y.; Wang, X.; Cichocki, A. An erp-based bci using an oddball paradigm with different faces and reduced errors in critical functions. Int. J. Neural Syst. 2014, 24, 1450027. [Google Scholar] [CrossRef]
- Li, M.; Yang, G.; Liu, Z.; Gong, M.; Xu, G.; Lin, F. The Effect of SOA on An Asynchronous ERP and VEP-Based BCI. IEEE Access 2021, 9, 9972–9981. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, L.; Meng, P.; Meng, X.; Weng, M. The Neural Responses of Visual Complexity in the Oddball Paradigm: An ERP Study. Brain Sci. 2022, 12, 447. [Google Scholar] [CrossRef]
- Luck, S.J. A closer look at ERPs and ERP components. In An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014; pp. 35–70. ISBN 9780262525855. [Google Scholar]
- Yadav, D.; Yadav, S.; Veer, K. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges. J. Neurosci. Methods 2020, 346, 108918. [Google Scholar] [CrossRef]
- Nijholt, A.; Contreras-Vidal, J.L.; Jeunet, C.; Väljamäe, A. Editorial: Brain-Computer Interfaces for Non-clinical (Home, Sports, Art, Entertainment, Education, Well-Being) Applications. Front. Comput. Sci. 2022, 4, 860619. [Google Scholar] [CrossRef]
- Jin, J.; Sellers, E.W.; Wang, X. Targeting an efficient target-to-target interval for P300 speller brain-computer interfaces. Med. Biol. Eng. Comput. 2012, 50, 289–296. [Google Scholar] [CrossRef]
- Ron-Angevin, R.; Varona-Moya, S.; Silva-Sauer, L. Da Initial test of a T9-like P300-based speller by an ALS patient. J. Neural Eng. 2015, 12, 046023. [Google Scholar] [CrossRef] [PubMed]
- Treder, M.S.; Blankertz, B. (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav. Brain Funct. 2010, 6, 28. [Google Scholar] [CrossRef]
- Sun, K.T.; Hsieh, K.L.; Syu, S.R. Towards an accessible use of a brain-computer interfaces-based home care system through a smartphone. Comput. Intell. Neurosci. 2020, 2020, 1843269. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yu, Y.; Liu, Y.; Tang, J.; Liang, X.; Chu, X.; Zhou, Z. A novel brain-controlled wheelchair combined with computer vision and augmented reality. Biomed. Eng. Online 2022, 21, 50. [Google Scholar] [CrossRef]
- Oh, J.; Kim, J.A. Supportive care needs of patients with amyotrophic lateral sclerosis/motor neuron disease and their caregivers: A scoping review. J. Clin. Nurs. 2017, 26, 4129–4152. [Google Scholar] [CrossRef] [PubMed]
- Camerer, C.F.; Dreber, A.; Holzmeister, F.; Ho, T.-H.; Huber, J.; Johannesson, M.; Kirchler, M.; Nave, G.; Nosek, B.A.; Pfeiffer, T.; et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2018, 2, 637–644. [Google Scholar] [CrossRef]
- Riccio, A.; Leotta, F.; Bianchi, L.; Aloise, F.; Zickler, C.; Hoogerwerf, E.-J.; Kübler, A.; Mattia, D.; Cincotti, F. Workload measurement in a communication application operated through a P300-based brain–computer interface. J. Neural Eng. 2011, 8, 25028. [Google Scholar] [CrossRef] [PubMed]
- Zammouri, A.; Ait Moussa, A.; Mebrouk, Y. Brain-computer interface for workload estimation: Assessment of mental efforts in learning processes. Expert Syst. Appl. 2018, 112, 138–147. [Google Scholar] [CrossRef]
- Lewis, J.R. The System Usability Scale: Past, Present, and Future. Int. J. Hum. Comput. Interact. 2018, 34, 577–590. [Google Scholar] [CrossRef]
Participants | Number of Sequences | Accuracy (%) | ITR (bit/min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GL | RFF | GFF | BFF | GL | RFF | GFF | BFF | GL | RFF | GFF | BFF | |
P01 | 7 | 5 | 5 | 3 | 100 | 91.67 | 100 | 91.67 | 13.13 | 14.06 | 18.38 | 23.44 |
P02 | 4 | 8 | 7 | 4 | 91.67 | 100 | 100 | 83.33 | 17.58 | 11.49 | 13.13 | 13.76 |
P03 | 5 | 5 | 6 | 3 | 83.33 | 66.67 | 91.67 | 41.67 | 11.01 | 6.35 | 11.72 | 2.97 |
P04 | 3 | 6 | 3 | 3 | 91.67 | 100 | 100 | 100 | 23.44 | 15.32 | 30.63 | 30.63 |
P05 | 4 | 4 | 4 | 5 | 50 | 75 | 83.33 | 91.67 | 3.769 | 10.61 | 13.76 | 14.06 |
P06 | 3 | 4 | 5 | 5 | 100 | 83.33 | 100 | 100 | 30.63 | 13.76 | 18.38 | 18.38 |
P07 | 4 | 4 | 3 | 4 | 100 | 100 | 100 | 100 | 22.98 | 22.98 | 30.63 | 22.98 |
P08 | 4 | 4 | 6 | 7 | 75 | 91.67 | 100 | 100 | 10.61 | 17.58 | 15.32 | 13.13 |
P09 | 5 | 10 | 10 | 7 | 83.33 | 83.33 | 83.33 | 83.33 | 11.01 | 5.504 | 5.504 | 7.86 |
P10 | 10 | 9 | 9 | 10 | 66.67 | 66.67 | 100 | 91.67 | 3.17 | 3.53 | 10.21 | 7.03 |
P11 | 3 | 3 | 3 | 4 | 100 | 100 | 100 | 100 | 30.63 | 30.63 | 30.63 | 22.98 |
P12 | 6 | 3 | 4 | 5 | 91.67 | 75 | 100 | 75 | 11.72 | 14.14 | 22.98 | 8.485 |
P13 | 3 | 6 | 5 | 5 | 50 | 91.67 | 100 | 91.67 | 5.025 | 11.72 | 18.38 | 14.06 |
P14 | 7 | 3 | 5 | 3 | 91.67 | 91.67 | 100 | 91.67 | 10.05 | 23.44 | 18.38 | 23.44 |
P15 | 5 | 6 | 8 | 3 | 75 | 91.67 | 83.33 | 83.33 | 8.485 | 11.72 | 6.88 | 18.35 |
Mean | 4.87 | 5.33 | 5.53 | 4.73 | 83.33 1 | 87.22 | 96.11 1 | 88.33 | 14.22 | 14.19 | 17.66 | 16.1 |
SD | 1.89 | 2.12 | 2.09 | 1.91 | 16.39 | 11.33 | 6.71 | 14.53 | 8.64 | 6.97 | 7.88 | 7.42 |
Participants | Fatigue | Visibility | Comfort | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GL | RFF | GFF | BFF | GL | RFF | GFF | BFF | GL | RFF | GFF | BFF | |
P01 | 3 | 3 | 3 | 4 | 4 | 3 | 3 | 3 | 4 | 3 | 2 | 1 |
P02 | 2 | 2 | 1 | 1 | 4 | 3 | 2 | 2 | 4 | 1 | 2 | 3 |
P03 | 2 | 2 | 2 | 2 | 2 | 4 | 3 | 4 | 4 | 2 | 1 | 3 |
P04 | 2 | 2 | 3 | 2 | 4 | 3 | 2 | 2 | 4 | 2 | 1 | 3 |
P05 | 2 | 3 | 2 | 4 | 4 | 3 | 3 | 2 | 4 | 3 | 1 | 2 |
P06 | 4 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 4 | 1 | 2 | 3 |
P07 | 1 | 1 | 2 | 2 | 4 | 4 | 3 | 4 | 1 | 4 | 2 | 3 |
P08 | 3 | 5 | 5 | 4 | 4 | 2 | 0 | 0 | 4 | 3 | 2 | 1 |
P09 | 1 | 1 | 1 | 2 | 4 | 3 | 4 | 4 | 3 | 1 | 4 | 2 |
P10 | 4 | 4 | 3 | 5 | 4 | 2 | 3 | 2 | 3 | 2 | 4 | 1 |
P11 | 3 | 3 | 3 | 3 | 3 | 1 | 4 | 1 | 4 | 2 | 1 | 3 |
P12 | 2 | 4 | 3 | 4 | 4 | 4 | 1 | 3 | 4 | 1 | 2 | 3 |
P13 | 3 | 3 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 2 | 3 | 1 |
P14 | 1 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 1 | 2 | 3 |
P15 | 4 | 5 | 5 | 4 | 3 | 2 | 4 | 1 | 4 | 2 | 1 | 3 |
Mean | 2.47 | 2.93 | 2.8 | 3 | 3.67 | 2.93 | 2.8 | 2.6 | 3.67 1 | 2 1 | 2 1 | 2.33 1 |
SD | 1.06 | 1.28 | 1.21 | 1.13 | 0.62 | 0.88 | 1.15 | 1.3 | 0.82 | 0.93 | 1 | 0.9 |
Study | Condition | Accuracy (%) | ITR (bit/min) |
---|---|---|---|
Ron-Angevin et al. [35] | White letters | 85.24 | 13.27 |
Famous faces | 90.53 | 17.2 | |
Pictures | 85.99 | 14.5 | |
Present study | GL | 83.3 | 14.2 |
RFF | 87.2 | 14.2 | |
GFF | 96.1 | 17.7 | |
BFF | 88.3 | 16.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ron-Angevin, R.; Fernández-Rodríguez, Á.; Velasco-Álvarez, F.; Lespinet-Najib, V.; André, J.-M. Evaluation of Different Types of Stimuli in an Event-Related Potential-Based Brain–Computer Interface Speller under Rapid Serial Visual Presentation. Sensors 2024, 24, 3315. https://doi.org/10.3390/s24113315
Ron-Angevin R, Fernández-Rodríguez Á, Velasco-Álvarez F, Lespinet-Najib V, André J-M. Evaluation of Different Types of Stimuli in an Event-Related Potential-Based Brain–Computer Interface Speller under Rapid Serial Visual Presentation. Sensors. 2024; 24(11):3315. https://doi.org/10.3390/s24113315
Chicago/Turabian StyleRon-Angevin, Ricardo, Álvaro Fernández-Rodríguez, Francisco Velasco-Álvarez, Véronique Lespinet-Najib, and Jean-Marc André. 2024. "Evaluation of Different Types of Stimuli in an Event-Related Potential-Based Brain–Computer Interface Speller under Rapid Serial Visual Presentation" Sensors 24, no. 11: 3315. https://doi.org/10.3390/s24113315