Ammonia Detection by Electronic Noses for a Safer Work Environment
Abstract
:1. Introduction
2. Sensors of Ammonia
Sensor Type | Film Type | Detection Range [ppm] | Sensitivity | Response Time | Recovery Time | References | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Value | Units | C [ppm] | Value [s] | C [ppm] | Value [s] | C [ppm] | |||
metal oxide | SnO2/In2O3 | 0.1 | 10,000 | 53 | (relative R) | 10 | 7 | 1 | 10 | 1 | [55] |
metal oxide | TiO2 | 5 | 100 | 220 | (relative G) | 20 | 34 | 5 | 90 | 5 | [57] |
metal oxide | PANI/TiO2 | 20 | 100 | 10 | [%] (normalized R) | 20 | ~63 | 20 | ~41 | 20 | [58] |
metal oxide | PANI/TiO2 | 0 | 150 | 1.3 | (normalized R) | 23 | 2 | 23 | 60 | 23 | [59] |
metal oxide | PANI/TiO2 | 0 | 141 | 1.67 | (normalized R) | 23 | 18 | 23 | 58 | 23 | [60] |
metal oxide | Sr/SnO2 | 10 | 2000 | ~15 | [%] (normalized R) | 20 | 16 | 10 | - | [61] | |
metal oxide | NiO/ZnO | 15 | 75 | 30 | [%] (normalized R) | 30 | 27 | 50 | 150 | 50 | [62] |
metal oxide | MoS2/ZnO | 2.5 | 100 | ~37 | [%] (normalized R) | 10 | 10 | 50 | 11 | 50 | [47] |
metal oxide | MoS2/PDDA | 2.5 | 100 | ~27 | [%] (normalized R) | 10 | 7 | 50 | 11 | 50 | [47] |
conducting polymer | PANI | 5 | 200 | 27 | [%] (normalized R) | 5 | 10 | 50 | 100 | 50 | [48] |
conducting polymer | Cu-PANI | 1 | 100 | ~86 | [%] (normalized I) | 50 | 7 | 50 | 160 | 50 | [49] |
conducting polymer | graphene/PANI | 1 | 6400 | 3.65 | [%] (normalized R) | 20 | 50 | 100 | 23 | 100 | [50] |
conducting polymer | B-N unit | 1 | 80 | 300 | (relative R) | 20 | 65 | 40 | 25 | 40 | [75] |
conducting polymer | CPNW | 0.8 | 59 | ~18 | (normalized R) | 23 | ~10 | 23 | ~200 | 23 | [31] |
SAW | ZnO/SiO2 | 5 | 120 | 2000 | [Hz] | 30 | 40 | 30 | 28 | 30 | [51] |
SAW | Co3O4/SiO2 | 1 | 60 | 4000 | [Hz] | 20 | ~80 | 20 | ~110 | 20 | [53] |
SAW | PANI | 20 | 70 | 1.79 | ppm [Hz] | 20.45 | ~80 | 20 | ~75 | 20 | [40] |
FET | PQT-12 | 10 | 80 | 23.8 | [%] (normalized I) | 20 | ~45 | 80 | ~80 | 80 | [54] |
3. Operation and Characterization of e-Noses
4. Additional Applications for Ammonia e-Noses
4.1. Hepatic Impairment
4.2. Renal Impairment
4.3. Gastric Impairment
4.4. Pulmonary Diseases
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Supchocksoonthorn, P.; Thongsai, N.; Moonmuang, H.; Kladsomboon, S.; Jaiyong, P.; Paoprasert, P. Label-free carbon dots from black sesame seeds for real-time detection of ammonia vapor via optical electronic nose and density functional theory calculation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 575, 118–128. [Google Scholar] [CrossRef]
- Sun, C.; Hong, S.; Cai, G.; Zhang, Y.; Kan, H.; Zhao, Z.; Deng, F.; Zhao, B.; Zeng, X.; Sun, Y.; et al. Indoor exposure levels of ammonia in residences, schools, and offices in China from 1980 to 2019: A systematic review. Indoor Air 2021, 31, 1691–1706. [Google Scholar] [CrossRef] [PubMed]
- Ampollini, L.; Katz, E.F.; Bourne, S.; Tian, Y.; Novoselac, A.; Goldstein, A.H.; Lucic, G.; Waring, M.S.; DeCarlo, P.F. Observations and Contributions of Real-Time Indoor Ammonia Concentrations during HOMEChem. Environ. Sci. Technol. 2019, 53, 8591–8598. [Google Scholar] [CrossRef] [PubMed]
- Kinidi, L.; Tan, I.A.W.; Wahab, N.B.A.; Bin Tamrin, K.F.; Hipolito, C.N.; Salleh, S.F. Recent Development in Ammonia Stripping Process for Industrial Wastewater Treatment. Int. J. Chem. Eng. 2018, 2018, 3181087. [Google Scholar] [CrossRef]
- Rosca, V.; Duca, M.; de Groot, M.T.; Koper, M.T.M. Nitrogen Cycle Electrocatalysis. Chem. Rev. 2009, 109, 2209–2244. [Google Scholar] [CrossRef] [PubMed]
- Service, R.F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610. [Google Scholar] [CrossRef] [PubMed]
- Schlögl, R. Catalytic Synthesis of Ammonia—A “Never-Ending Story”? Angew. Chem. Int. Ed. 2003, 42, 2004–2008. [Google Scholar] [CrossRef] [PubMed]
- Canter, L.W. Nitrates in Groundwater, 1st ed.; Routledge: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Chan, M.-J.; Li, Y.-J.; Wu, C.-C.; Lee, Y.-C.; Zan, H.-W.; Meng, H.-F.; Hsieh, M.-H.; Lai, C.-S.; Tian, Y.-C. Breath Ammonia Is a Useful Biomarker Predicting Kidney Function in Chronic Kidney Disease Patients. Biomedicines 2020, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed. J. 2023, 46, 100623. [Google Scholar] [CrossRef] [PubMed]
- Fedoruk, M.J.; Bronstein, R.; Kerger, B.D. Ammonia exposure and hazard assessment for selected household cleaning product uses. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Toxicological Profile for Ammonia, tlanta (GA): Agency for Toxic Substances and Disease Registry (US), 2004. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=11&tid=2 (accessed on 2 May 2024).
- Schulze, A.; Römmelt, H.; Ehrenstein, V.; van Strien, R.; Praml, G.; Küchenhoff, H.; Nowak, D.; Radon, K. Effects on Pulmonary Health of Neighboring Residents of Concentrated Animal Feeding Operations: Exposure Assessed Using Optimized Estimation Technique. Arch. Environ. Occup. Health 2011, 66, 146–154. [Google Scholar] [CrossRef]
- Occupational Safety and Health Guideline for Ammonia, 1992. Available online: https://webarchive.library.unt.edu/eot2008/20081022120658/http://www.cdc.gov/niosh/pdfs/0028-rev.pdf (accessed on 2 May 2024).
- AMMONIA|Occupational Safety and Health Administration. Available online: https://www.osha.gov/chemicaldata/623 (accessed on 2 May 2024).
- Directive 2000/39/EC-Indicative Occupational Exposure Limit Values, 2000. Available online: https://osha.europa.eu/en/legislation/directives/directive-2000-39-ec-indicative-occupational-exposure-limit-values (accessed on 2 May 2024).
- Magro, C.; Mateus, E.P.; Raposo, M.; Ribeiro, A.B. Overview of electronic tongue sensing in environmental aqueous matrices: Potential for monitoring emerging organic contaminants. Environ. Rev. 2019, 27, 202–214. [Google Scholar] [CrossRef]
- Honeywell BWTM Ultra. Available online: https://sps.honeywell.com/us/en/products/safety/gas-and-flame-detection/portables/honeywell-bw-ultra?s_kwcid=AL!7892!3!!!!x!!&https://sps.honeywell.com/us/en/products/safety/gas-and-flame-detection/portables/honeywell-bw-ultra%3Fs_kwcid%3DAL!7892!3!!!!x!!&_bt=&_bk=&_bm=&_bn=x&_bg=&gad_source=1&gclid=EAIaIQobChMI4IaexsvvhQMVVEJBAh1vSgCkEAAYASAAEgKe0_D_BwE (accessed on 2 May 2024).
- Ventis Pro5. Available online: https://www.indsci.com/pt/detectores-de-g%C3%A1s/multi/ventis-pro5 (accessed on 2 May 2024).
- MX6 iBrid. Available online: https://www.indsci.com/en/gas-detectors/multi/mx6-ibrid (accessed on 2 May 2024).
- PPM WR VOC Gas Sensor. Available online: https://ionscience.com/en/products/minipid-2-ppm-wide-range-gas-sensor/ (accessed on 2 May 2024).
- PPM VOC Gas Sensor. Available online: https://ionscience.com/en/products/minipid-2-ppm-gas-sensor/ (accessed on 2 May 2024).
- Agbroko, S.O.; Covington, J. A novel, low-cost, portable PID sensor for the detection of volatile organic compounds. Sens. Actuators B Chem. 2018, 275, 10–15. [Google Scholar] [CrossRef]
- Bílek, J.; Maršolek, P.; Bílek, O.; Buček, P. Field Test of Mini Photoionization Detector-Based Sensors—Monitoring of Volatile Organic Pollutants in Ambient Air. Environments 2022, 9, 49. [Google Scholar] [CrossRef]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Gu, C.; Yu, K.; Meng, F.; Liu, J. A novel highly sensitive gas ionization sensor for ammonia detection. Sens. Actuators A Phys. 2009, 150, 218–223. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Y. Room temperature ammonia sensing properties of W18O49 nanowires. Sens. Actuators B Chem. 2009, 137, 27–31. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Andre, R.S.; Chen, J.; Kwak, D.; Correa, D.S.; Mattoso, L.H.; Lei, Y. A flexible and disposable poly(sodium 4-styrenesulfonate)/polyaniline coated glass microfiber paper for sensitive and selective detection of ammonia at room temperature. Synth. Met. 2017, 233, 22–27. [Google Scholar] [CrossRef]
- Liu, H.; Kameoka, J.; Czaplewski, D.A.; Craighead, H.G. Polymeric Nanowire Chemical Sensor. Nano Lett. 2004, 4, 671–675. [Google Scholar] [CrossRef]
- Verma, A.; Gupta, R.; Verma, A.S.; Kumar, T. A review of composite conducting polymer-based sensors for detection of industrial waste gases. Sens. Actuators Rep. 2023, 5, 100143. [Google Scholar] [CrossRef]
- Peeters, R.; Berden, G.; Apituley, A.; Meijer, G. Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy. Appl. Phys. B Laser Opt. 2000, 71, 231–236. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Tittel, F.K.; Lewicki, R. Tunable mid-infrared laser absorption spectroscopy. In Semiconductor Lasers; Elsevier BV: Amsterdam, The Netherlands, 2013; pp. 579–629. [Google Scholar]
- Xiong, L.; Compton, R.G. Amperometric Gas detection: A Review. Int. J. Electrochem. Sci. 2014, 9, 7152–7181. [Google Scholar] [CrossRef]
- Penza, M.; Milella, E.; Anisimkin, V. Gas sensing properties of Langmuir-Blodgett polypyrrole film investigated by surface acoustic waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998, 45, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Ostrick, B.; Pohle, R.; Fleischer, M.; Meixner, H. TiN in work function type sensors: A stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity. Sens. Actuators B Chem. 2000, 68, 234–239. [Google Scholar] [CrossRef]
- Won, M.; Sim, J.; Oh, G.; Jung, M.; Mantry, S.P.; Kim, D.-S. Fabrication of a Fully Printed Ammonia Gas Sensor Based on ZnO/rGO Using Ultraviolet–Ozone Treatment. Sensors 2024, 24, 1691. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-Y.; Liou, S.-Y. Surface acoustic wave gas monitor for ppm ammonia detection. Sens. Actuators B Chem. 2008, 131, 673–679. [Google Scholar] [CrossRef]
- NH3-B1/NH3-B1. Available online: https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_nh3-b1_datasheet_en_3.pdf?revision:ad7652a9-2612-4b3f-8835-e7aba5206b04 (accessed on 2 May 2024).
- NH3-AF. Available online: https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_nh3-af-2_datasheet_en_1.pdf?revision:51bbe2b6-ee9a-4b0c-aae9-bcf07c7c851a (accessed on 2 May 2024).
- OPC-R2. Available online: https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_opc-r2_datasheet_en_1.pdf?revision:1d5d5cab-af94-4f53-ba9a-2fd706fe974b (accessed on 2 May 2024).
- OPC-N3. Available online: https://ametekcdn.azureedge.net/mediafiles/project/oneweb/oneweb/alphasense/products/datasheets/alphasense_opc-n3_datasheet_en_1.pdf?revision:29541b07-612a-42ba-b362-f41a48cf2e48 (accessed on 2 May 2024).
- Chen, Y.; Zhang, W.; Wu, Q. A highly sensitive room-temperature sensing material for NH3: SnO2-nanorods coupled by rGO. Sens. Actuators B Chem. 2017, 242, 1216–1226. [Google Scholar] [CrossRef]
- Ye, Z.; Tai, H.; Guo, R.; Yuan, Z.; Liu, C.; Su, Y.; Chen, Z.; Jiang, Y. Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology. Appl. Surf. Sci. 2017, 419, 84–90. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, C.; Sun, Y. Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film. J. Alloys Compd. 2017, 698, 476–483. [Google Scholar] [CrossRef]
- Du, Z.; Li, C.; Li, L.; Yu, H.; Wang, Y.; Wang, T. Ammonia gas detection based on polyaniline nanofibers coated on interdigitated array electrodes. J. Mater. Sci. Mater. Electron. 2011, 22, 418–421. [Google Scholar] [CrossRef]
- Patil, U.; Ramgir, N.S.; Karmakar, N.; Bhogale, A.; Debnath, A.; Aswal, D.; Gupta, S.; Kothari, D. Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 2015, 339, 69–74. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B Chem. 2013, 178, 485–493. [Google Scholar] [CrossRef]
- Tang, Y.-L.; Li, Z.-J.; Ma, J.-Y.; Guo, Y.-J.; Fu, Y.-Q.; Zu, X.-T. Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens. Actuators B Chem. 2014, 201, 114–121. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Ma, J.-Y.; Li, Z.-J.; Su, H.; Alkurd, N.; Zhou, W.-L.; Wang, L.; Du, B.; Tang, Y.-L.; Ao, D.-Y.; et al. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. J. Hazard. Mater. 2015, 285, 368–374. [Google Scholar] [CrossRef]
- Tang, Y.-L.; Li, Z.-J.; Ma, J.-Y.; Su, H.-Q.; Guo, Y.-J.; Wang, L.; Du, B.; Chen, J.-J.; Zhou, W.; Yu, Q.-K.; et al. Highly sensitive room-temperature surface acoustic wave (SAW) ammonia sensors based on Co3O4/SiO2 composite films. J. Hazard. Mater. 2014, 280, 127–133. [Google Scholar] [CrossRef]
- Kumar, C.; Rawat, G.; Kumar, H.; Kumar, Y.; Prakash, R.; Jit, S. Electrical and ammonia gas sensing properties of poly (3, 3‴- dialkylquaterthiophene) based organic thin film transistors fabricated by floating-film transfer method. Org. Electron. 2017, 48, 53–60. [Google Scholar] [CrossRef]
- Qi, Q.; Wang, P.-P.; Zhao, J.; Feng, L.-L.; Zhou, L.-J.; Xuan, R.-F.; Liu, Y.-P.; Li, G.-D. SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties. Sens. Actuators B Chem. 2014, 194, 440–446. [Google Scholar] [CrossRef]
- Tang, H.; Yan, M.; Zhang, H.; Li, S.; Ma, X.; Wang, M.; Yang, D. A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens. Actuators B Chem. 2006, 114, 910–915. [Google Scholar] [CrossRef]
- Dhivya, P.; Prasad, A.K.; Sridharan, M. Nanostructured TiO2 films: Enhanced NH3 detection at room temperature. Ceram. Int. 2014, 40, 409–415. [Google Scholar] [CrossRef]
- Pawar, S.G.; Chougule, M.A.; Patil, S.L.; Raut, B.T.; Godse, P.R.; Sen, S.; Patil, V.B. Room Temperature Ammonia Gas Sensor Based on Polyaniline-TiO2 Nanocomposite. IEEE Sens. J. 2011, 11, 3417–3423. [Google Scholar] [CrossRef]
- Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X.; Ying, Z. Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens. Actuators B Chem. 2008, 129, 319–326. [Google Scholar] [CrossRef]
- Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X. Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sens. Actuators B Chem. 2007, 125, 644–650. [Google Scholar] [CrossRef]
- Xu, S.; Kan, K.; Yang, Y.; Jiang, C.; Gao, J.; Jing, L.; Shen, P.; Li, L.; Shi, K. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers. J. Alloys Compd. 2015, 618, 240–247. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P.; Wei, X. High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals. ACS Appl. Mater. Interfaces 2015, 7, 3816–3824. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-G.; Chen, J.-H.; Chao, Y.-C.; Chen, P.-L. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas. Sensors 2018, 18, 37. [Google Scholar] [CrossRef]
- Gautam, M.; Jayatissa, A.H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron. 2012, 78, 159–165. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G.; Rossi, R.; Alvisi, M.; Rizzo, A.; Signore, M.A.; Dikonimos, T.; Serra, E.; Giorgi, R. Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters. Appl. Phys. Lett. 2007, 90, 173123. [Google Scholar] [CrossRef]
- Johnson, J.L.; Behnam, A.; An, Y.; Pearton, S.J.; Ural, A. Experimental study of graphitic nanoribbon films for ammonia sensing. J. Appl. Phys. 2011, 109, 124301. [Google Scholar] [CrossRef]
- Bendahan, M.; Lauque, P.; Seguin, J.-L.; Aguir, K.; Knauth, P. Development of an ammonia gas sensor. Sens. Actuators B Chem. 2003, 95, 170–176. [Google Scholar] [CrossRef]
- Soleimanpour, A.M.; Jayatissa, A.H.; Sumanasekera, G. Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 2013, 276, 291–297. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, Q.; Xie, G.; Su, Y.; Zhao, K.; Du, H.; Jiang, Y. Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature. Chem. Phys. Lett. 2016, 665, 147–152. [Google Scholar] [CrossRef]
- Sharma, A.; Bhojane, P.; Rana, A.K.; Kumar, Y.; Shirage, P.M. Mesoporous nickel cobalt hydroxide/oxide as an excellent room temperature ammonia sensor. Scr. Mater. 2017, 128, 65–68. [Google Scholar] [CrossRef]
- Carquigny, S.; Sanchez, J.; Berger, F.; Lakard, B.; Lallemand, F. Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta 2009, 78, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tang, C. Tunable p/n property of WS2 nanosheets-based ammonia gas sensor: Assembled by drop-coating and aerosol-jet printing. Appl. Surf. Sci. 2024, 655, 159612. [Google Scholar] [CrossRef]
- Hou, L.; Xu, X.; Zhong, Z.; Tian, F.; Wang, L.; Xu, Y. Bimetallic MOF-Based Sensor for Highly Sensitive Detection of Ammonia Gases. ACS Appl. Mater. Interfaces 2024, 16, 13191–13201. [Google Scholar] [CrossRef]
- Cruz-Arzon, A.J.; Pérez, J.; Ramos, I.; Pinto, N.J.; Falcón-Cruz, N.V.; Oyola, R.; Jiang, Y.; Gupta, N.; Johnson, A.T.C. Electrical Characterization and Ammonia Gas Response of a p-Si/n-poly[benzimidazobenzophenanthroline] Thin-Film Junction Diode. Phys. Status Solidi A 2024, 221, 2300861. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.; Zheng, K.; Ye, W.; Zhang, S.; Wang, B.; Long, X. High-Performance Room Temperature Ammonia Sensors Based on Pure Organic Molecules Featuring B-N Covalent Bond. Adv. Sci. 2024, e2308483. [Google Scholar] [CrossRef] [PubMed]
- Arulazi, V.; Kalainathan, S. Molybdenum-doped BiVO4 thin films deposited through chemical spray pyrolysis for ammonia sensing at room temperature. J. Mater. Sci. Mater. Electron. 2024, 35, 1–15. [Google Scholar] [CrossRef]
- Jansi, R.; Revathy, M.; Vinoth, S.; Isaac, R.; Ashraf, I.; Shkir, M. High-performance ammonia gas sensor based on spray pyrolysis developed In2O3:La films. Phys. Scr. 2024, 99, 035905. [Google Scholar] [CrossRef]
- Hjiri, M.; Algessair, S.; Dhahri, R.; Albargi, H.B.; Ben Mansour, N.; Assadi, A.A.; Neri, G. Ammonia gas sensors based on undoped and Ca-doped ZnO nanoparticles. RSC Adv. 2024, 14, 5001–5011. [Google Scholar] [CrossRef] [PubMed]
- Moshayedi, A.J.; Khan, A.S.; Hu, J.; Nawaz, A.; Zhu, J. E-Nose-Driven Advancements in Ammonia Gas Detection: A Comprehensive Review from Traditional to Cutting-Edge Systems in Indoor to Outdoor Agriculture. Sustainability 2023, 15, 11601. [Google Scholar] [CrossRef]
- Magro, C.; Gonçalves, O.C.; Morais, M.; Ribeiro, P.A.; Sério, S.; Vieira, P.; Raposo, M. Volatile Organic Compound Monitoring during Extreme Wildfires: Assessing the Potential of Sensors Based on LbL and Sputtering Films. Sensors 2022, 22, 6677. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, V.; Ganesan, R.; Syedahamed, H.H.A.; Thaiyan, M. Effect of Cobalt Doping on Structural, Optical, and Magnetic Properties of ZnO Nanoparticles Synthesized by Coprecipitation Method. J. Phys. Chem. C 2014, 118, 9715–9725. [Google Scholar] [CrossRef]
- Ray, P.; Pal, S.; Sarkar, A.; Sultana, F.; Basu, A.; Show, B. Oyster Pearl-Shaped Ternary Iron Chalcogenide, FeSe0.5Te0.5, Films on FTO through Electrochemical Growth from the Exchange of Chalcogens Boosted the Enzyme-Free Urea-Sensing Ability toward Real Analytes. ACS Appl. Bio Mater. 2024, 7, 1621–1642. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Ding, N.; Wang, Z.; Gou, X.; Peng, L.; Ma, J.; Fang, Y. Room-Temperature Phosphorescence Materials Featuring Triplet Hybrid Local Charge Transfer Emission. J. Phys. Chem. Lett. 2024, 15, 2995–3001. [Google Scholar] [CrossRef] [PubMed]
- Raposo, M.; Ribeiro, P.A.; El Bari, N.; Bouchikhi, B. Sensing of Component Traces in Complex Systems. In Electrokinetics Across Disciplines and Continents: New Strategies for Sustainable Development; Ribeiro, A.B., Mateus, E.P., Couto, N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 401–426. [Google Scholar] [CrossRef]
- Jia, P.; Li, X.; Xu, M.; Zhang, L. Classification techniques of electronic nose: A review. Int. J. Bio-Inspired Comput. 2024, 23, 16–27. [Google Scholar] [CrossRef]
- Kaushal, S.; Nayi, P.; Rahadian, D.; Chen, H.-H. Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review. Agriculture 2022, 12, 1359. [Google Scholar] [CrossRef]
- Hibbard, T.; Killard, A.J. Breath Ammonia Analysis: Clinical Application and Measurement. Crit. Rev. Anal. Chem. 2011, 41, 21–35. [Google Scholar] [CrossRef]
- Brannelly, N.T.; Hamilton-Shield, J.P.; Killard, A.J. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit. Rev. Anal. Chem. 2016, 46, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Moura, P.C.; Ribeiro, P.A.; Raposo, M.; Vassilenko, V. The State of the Art on Graphene-Based Sensors for Human Health Monitoring through Breath Biomarkers. Sensors 2023, 23, 9271. [Google Scholar] [CrossRef]
- Parekh, P.J.; Balart, L.A. Ammonia and Its Role in the Pathogenesis of Hepatic Encephalopathy. Clin. Liver Dis. 2015, 19, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Meulenbelt, J. Ammonia. Medicine 2012, 40, 94–95. [Google Scholar] [CrossRef]
- Adeva, M.M.; Souto, G.; Blanco, N.; Donapetry, C. Ammonium metabolism in humans. Metabolism 2012, 61, 1495–1511. [Google Scholar] [CrossRef]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath biomarkers in Non-Carcinogenic diseases. Clin. Chim. Acta 2024, 552, 117692. [Google Scholar] [CrossRef]
- Bai, C.; Wang, H.; Dong, D.; Li, T.; Yu, Z.; Guo, J.; Zhou, W.; Li, D.; Yan, R.; Wang, L.; et al. Urea as a By-Product of Ammonia Metabolism Can Be a Potential Serum Biomarker of Hepatocellular Carcinoma. Front. Cell Dev. Biol. 2021, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, G.; van Munster, K.; Ferrandino, G.; Sauca, M.; Ponsioen, C.; van Schooten, F.-J.; Smolinska, A. Liver Impairment—The Potential Application of Volatile Organic Compounds in Hepatology. Metabolites 2021, 11, 618. [Google Scholar] [CrossRef] [PubMed]
- Ishida, J.; Oikawa, T.; Nakagawa, C.; Takano, K.; Fujioka, K.; Kikuchi, Y.; Tsuboi, O.; Ueda, K.; Nakano, M.; Saeki, C.; et al. Real-time breath ammonia measurement using a novel cuprous bromide sensor device in patients with chronic liver disease: A feasibility and pilot study. J. Breath Res. 2021, 15, 026010. [Google Scholar] [CrossRef] [PubMed]
- Germanese, D.; Colantonio, S.; D’acunto, M.; Romagnoli, V.; Salvati, A.; Brunetto, M. An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study. Sensors 2019, 19, 3656. [Google Scholar] [CrossRef] [PubMed]
- Shalimar, M.F.; Sheikh, R.P.; Mookerjee, B.; Agarwal, S.K.; Jalan, R. Prognostic Role of Ammonia in Patients With Cirrhosis. Hepatology 2019, 70, 982–994. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Kohno, M.; Hirayama, C. Metabolism of15N-ammonia in patients with cirrhosis: A three-compartmental analysis. Hepatology 1992, 16, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Spacek, L.A.; Mudalel, M.; Tittel, F.; Risby, T.H.; Solga, S.F. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults. J. Breath Res. 2015, 9, 047109. [Google Scholar] [CrossRef] [PubMed]
- Adrover, R.; Cocozzella, D.; Ridruejo, E.; García, A.; Rome, J.; Podestá, J.J. Breath-Ammonia Testing of Healthy Subjects and Patients with Cirrhosis. Dig. Dis. Sci. 2011, 57, 189–195. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Schulz, S.; Haueisen, J.; Vogler, S.; Horn, P.; Stallmach, A.; Reuken, P. Detection of Liver Dysfunction Using a Wearable Electronic Nose System Based on Semiconductor Metal Oxide Sensors. Biosensors 2022, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Goudar, S.P.; Shah, S.S.; Shirali, G.S. Myth: Interpretation of a single ammonia level in patients with chronic liver disease can confirm or rule out hepatic encephalopathy. Can. J. Emerg. Med. 2006, 8, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Mallet, M.; Desplats, V.; Bouzbib, C.; Sultanik, P.; Alioua, I.; Rudler, M.; Weiss, N.; Thabut, D. Blood ammonia in patients with chronic liver diseases: A better defined role in clinical practice. Anal. Biochem. 2022, 657, 114873. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.M.; Bauer, C.; Abramowitz, M.K.; Melamed, M.L.; Hostetter, T.H. Treatment of chronic kidney disease. Kidney Int. 2012, 81, 351–362. [Google Scholar] [CrossRef]
- Hsu, C.; Ordoñez, J.; Chertow, G.; Fan, D.; McCulloch, C.; Go, A. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 2008, 74, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P.P.; Gregory, O.J. Sensors for the detection of ammonia as a potential biomarker for health screening. Sci. Rep. 2021, 11, 7185. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.M.; Eetemadi, A.; Tagkopoulos, I. Reduced Graphene Oxide-Metalloporphyrin Sensors for Human Breath Screening. Appl. Sci. 2021, 11, 11290. [Google Scholar] [CrossRef]
- Chen, W.; Laiho, S.; Vaittinen, O.; Halonen, L.; Ortiz, F.; Forsblom, C.; Groop, P.-H.; Lehto, M.; Metsälä, M. Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis. J. Breath Res. 2016, 10, 036011. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradi, A.; Hosseini, A.; Akbarinejad, A.; Alizadeh, N. Noninvasive Detection of Ammonia in the Breath of Hemodialysis Patients Using a Highly Sensitive Ammonia Sensor Based on a Polypyrrole/Sulfonated Graphene Nanocomposite. Anal. Chem. 2021, 93, 6706–6714. [Google Scholar] [CrossRef] [PubMed]
- Yabaş, E.; Biçer, E.; Altındal, A. Novel reduced graphene oxide/zinc phthalocyanine and reduced graphene oxide/cobalt phthalocyanine hybrids as high sensitivity room temperature volatile organic compound gas sensors. J. Mol. Struct. 2023, 1271, 134076. [Google Scholar] [CrossRef]
- Wilson, A.D. Application of Electronic-Nose Technologies and VOC-Biomarkers for the Noninvasive Early Diagnosis of Gastrointestinal Diseases. Sensors 2018, 18, 2613. [Google Scholar] [CrossRef] [PubMed]
- Bouchikhi, B.; Zaim, O.; El Bari, N.; Lagdali, N.; Benelbarhdadi, I.; Ajana, F.Z. Diagnosing Lung And Gastric Cancers Through Exhaled Breath Analysis By Using Electronic Nose Technology Combined With Pattern Recognition Methods. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Mégraud, F.; Floch, P.; Labenz, J.; Lehours, P. Diagnostic of Helicobacter pylori infection. Helicobacter 2016, 21, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.L.C.; de Brito, B.B.; da Silva, F.A.F.; Sampaio, M.M.; Marques, H.S.; e Silva, N.O.; Queiroz, D.M.d.M.; de Melo, F.F. Helicobacter pylori infection: Beyond gastric manifestations. World J. Gastroenterol. 2020, 26, 4076–4093. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Jiang, D.; Wu, J.; Sun, X.; Deng, M.; Wang, L.; Hao, C.; Shi, J.; Liu, H.; Tian, Y.; et al. An ultrasensitive fluorescent breath ammonia sensor for noninvasive diagnosis of chronic kidney disease and helicobacter pylori infection. Chem. Eng. J. 2022, 440, 135979. [Google Scholar] [CrossRef]
- Zilberman, Y.; Sonkusale, S.R. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens. Bioelectron. 2015, 67, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Vassilenko, V.; Moura, P.C.; Raposo, M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023, 11, 3029. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J. Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. ACS Appl. Mater. Interfaces 2020, 12, 17725–17736. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.F.; Erwin, E.; Palmer, L.; Vaughan, J.; Malhotra, N.; Platts-Mills, T.A.E.; Gaston, B. Expression and Activity of pH-regulatory Glutaminase in the Human Airway Epithelium. Am. J. Respir. Crit. Care Med. 2002, 165, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Newport, S.; Amin, N.; Dozor, A.J. Exhaled breath condensate pH and ammonia in cystic fibrosis and response to treatment of acute pulmonary exacerbations. Pediatr. Pulmonol. 2009, 44, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Wallis, R.S.; Kim, P.; Cole, S.; Hanna, D.; Andrade, B.B.; Maeurer, M.; Schito, M.; Zumla, A. Tuberculosis biomarkers discovery: Developments, needs, and challenges. Lancet Infect. Dis. 2013, 13, 362–372. [Google Scholar] [CrossRef]
- McNerney, R.; Mallard, K.; Okolo, P.I.; Turner, C. Production of volatile organic compounds by mycobacteria. FEMS Microbiol. Lett. 2012, 328, 150–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, T.; Moura, P.C.; Gonçalves, D.; Ribeiro, P.A.; Vassilenko, V.; Fino, M.H.; Raposo, M. Ammonia Detection by Electronic Noses for a Safer Work Environment. Sensors 2024, 24, 3152. https://doi.org/10.3390/s24103152
Reis T, Moura PC, Gonçalves D, Ribeiro PA, Vassilenko V, Fino MH, Raposo M. Ammonia Detection by Electronic Noses for a Safer Work Environment. Sensors. 2024; 24(10):3152. https://doi.org/10.3390/s24103152
Chicago/Turabian StyleReis, Tiago, Pedro Catalão Moura, Débora Gonçalves, Paulo A. Ribeiro, Valentina Vassilenko, Maria Helena Fino, and Maria Raposo. 2024. "Ammonia Detection by Electronic Noses for a Safer Work Environment" Sensors 24, no. 10: 3152. https://doi.org/10.3390/s24103152
APA StyleReis, T., Moura, P. C., Gonçalves, D., Ribeiro, P. A., Vassilenko, V., Fino, M. H., & Raposo, M. (2024). Ammonia Detection by Electronic Noses for a Safer Work Environment. Sensors, 24(10), 3152. https://doi.org/10.3390/s24103152