High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface
Abstract
:1. Introduction
2. Metasurface Design
2.1. Analysis of Phase Response
2.2. Design of Meta-Atoms
2.3. Implemention of the Functional Metasurface
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Schulz, S.A.; DeLeon, I.; Qassim, H.; Upham, J.; Boyd, R.W. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 2014, 3, e167. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.B.; Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 2017, 358, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Y.; Zhao, L.; Guo, K.; Wei, Z.; Meng, H. Generation and conversion of a dual-band Laguerre-Gaussian beam with different OAM based on a bilayer metasurface. Opt. Mater. Expr. 2022, 12, 1163–1173. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, Q.; Tang, X.; He, J.; Liu, J.; Zhang, B.; Zou, K. Frequency scanning dual-mode asymmetric dual-OAM-wave generation base on broadband PB metasurface. Micromachines 2022, 13, 1117. [Google Scholar] [CrossRef] [PubMed]
- Maguid, E.; Yulevich, I.; Veksler, D.; Kleiner, V.; Brongersma, M.L.; Hasman, E. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 2016, 352, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kotlyar, V.V.; Skidanov, R.V.; Soifer, V.A.; Laakkonen, P.; Turunen, J. Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element. Opt. Commun. 2000, 175, 301–308. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Chen, L.; Pu, M.; Jin, J.; Hong, M.; Luo, X. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater. 2017, 5, 1600502. [Google Scholar] [CrossRef]
- Zhao, H.; Quan, B.; Wang, X.; Gu, C.; Li, J.; Zhang, Y. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photon. 2018, 5, 1726–1732. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Deng, L.; Hong, W.; Zhang, C.; Li, S. Terahertz angle-multiplexed metasurface for multi-dimensional multiplexing of spatial and frequency domains. Adv. Theor. Simul. 2020, 3, 2000115. [Google Scholar] [CrossRef]
- Tan, H.; Deng, J.; Zhao, R. A free space orbital angular momentum multiplexing communication system based on a metasurface. Laser Photon. Rev. 2019, 13, 1800278. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, X.; Shan, M. Multi-orbital angular momentum mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces. Phys. Rev. Appl. 2022, 17, 034017. [Google Scholar] [CrossRef]
- Wang, E.; Niu, J.; Liang, Y.; Li, H.; Hua, Y.; Shi, L.; Xie, C. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields. Adv. Opt. Mater. 2020, 8, 1901674. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Zhang, Y.; Cheng, H.; Tian, J. Phase Manipulation of Electromagnetic Waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 2018, 6, 1800104. [Google Scholar] [CrossRef]
- Beccaria, M.; Dassano, G.; Pirinoli, P. Single-layer, multimode OAM reflectarray antennas. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 980–984. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, D.; Liu, Q.; Yan, M.; Wang, X. Dual-mode vortex beam transmission metasurface antenna based on linear-to-circular polarization converter. Opt. Expr. 2023, 31, 35632–35643. [Google Scholar] [CrossRef]
- Zheng, C.; Li, H.; Zang, H.; Yao, J. Terahertz polarization detection based on the mode analysis of longitudinally polarized vortices. Opt. Laser Technol. 2024, 170, 110210. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, J.; Li, H.; Wang, M.; Zang, H.; Zhang, Y.; Yao, J. Terahertz metasurface polarization detection employing vortex pattern recognition. Photon. Res. 2023, 11, 2256–2263. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O'Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Trans. Antennas Propag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Estakhri, N.M.; Alù, A. Recent progress in gradient metasurfaces. J. Opt. Soc. Am. B 2016, 33, A21. [Google Scholar] [CrossRef]
- Kamali, S.M.; Arbabi, E.; Arbabi, A.; Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 2018, 7, 1041–1068. [Google Scholar] [CrossRef]
- He, Q.; Sun, S.; Xiao, S.; Zhou, L. High-efficiency metasurfaces: Principles, realizations, and applications. Adv. Opt. Mater. 2018, 6, 1800415. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Q.; Liu, F.; Qiu, M.; Sun, S.; He, Q.; Zhou, L. Controlling angular dispersions in optical metasurfaces. Light Sci. Appl. 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Sell, D.; Yang, J.; Doshay, S.; Fan, J. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv. Opt. Mater. 2017, 5, 1700645. [Google Scholar] [CrossRef]
- Aieta, F.; Kats, M.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Arbabi, A.; Arbabi, E.; Horie, Y.; Kamali, S.; Faraon, A. Planar metasurface retroreflector. Nat. Photon. 2017, 11, 415–420. [Google Scholar] [CrossRef]
- Bi, F.; Ba, Z.; Wang, X. Metasurface-based broadband orbital angular momentum generator in millimeter wave region. Opt. Expr. 2018, 26, 25693–25705. [Google Scholar] [CrossRef]
- Aieta, F.; Kabiri, A.; Genevet, P.; Yu, N.; Kats, M.A.; Gaburro, Z.; Capasso, F. Reflection and refraction of light from metasurfaces with phase discontinuities. J. Nanophoton. 2012, 6, 063532. [Google Scholar] [CrossRef]
- Xu, L.; Yin, Z.; Yang, J.; Li, Y. Orbital angular momentum multiplexing based on angle-dispersive metasurface. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1974–1975. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Yin, Z.; Deng, G.; Lai, W.; Wang, X.; Zhang, D.; Zhu, Q. Angle-dispersive metasurface for axisymmetric wavefront manipulation over continuous incident angles. Phys. Rev. Appl. 2020, 14, 031001. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Yang, J.; Deng, G.; Yin, Z.; Li, X.; Wang, X. TM-polarized angle-dispersive metasurface for axisymmetric extension of beam steering angles. Opt. Expr. 2021, 29, 3211–3220. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.; Grbic, A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 2013, 110, 197401. [Google Scholar] [CrossRef]
- Jack, B.; Padgett, M.; Franke, S. Angular diffraction. New J. Phys. 2008, 10, 103013. [Google Scholar] [CrossRef]
Ref. | Phase Distribution Strategy | Multiplexed OAM Modes | Mode Purity (Pm) | Multiplexed Power Proportion (P) |
---|---|---|---|---|
[8] | Field summation | 0, ±1, ±2 | Not provided | Not provided |
[9] | Field summation | ±1, ±2 | Not provided | Not provided |
[10] | Field summation | −1, −2 | Not provided | Not provided |
[11] | Field summation | ±4, ±5 | ≤53% | ≤13.3% |
[12] | Field summation | 1, 2 | ≤28.6% | ≤14.3% |
[15] | Field summation | 2, 4 | ≤62% | ≤31% |
[16] | Polarization division | ±1 | Not provided | Not provided |
This work | Exact calculation | 0, ±2 | ≥21% | ≥21% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xia, Q.; Yang, J.; Deng, G.; Yin, Z. High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface. Sensors 2024, 24, 228. https://doi.org/10.3390/s24010228
Li Y, Xia Q, Yang J, Deng G, Yin Z. High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface. Sensors. 2024; 24(1):228. https://doi.org/10.3390/s24010228
Chicago/Turabian StyleLi, Ying, Qiang Xia, Jun Yang, Guangsheng Deng, and Zhiping Yin. 2024. "High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface" Sensors 24, no. 1: 228. https://doi.org/10.3390/s24010228
APA StyleLi, Y., Xia, Q., Yang, J., Deng, G., & Yin, Z. (2024). High-Efficiency Multi-Channel Orbital Angular Momentum Multiplexing Enabled by the Angle-Dispersive Metasurface. Sensors, 24(1), 228. https://doi.org/10.3390/s24010228