A GaN-HEMT Active Drain-Pumped Mixer for S-Band FMCW Radar Front-End Applications
Abstract
:1. Introduction
1.1. Optimum-Bias Methods for DP Mixers
1.2. DP-Mixer in the Radar Context
2. Analysis
2.1. Existing Method for Prediction of Optimum Bias Point in DP Mixers
2.2. Proposed Method for Prediction of Optimum Bias Point in DP Mixers
2.2.1. Gate-Side
2.2.2. Drain-Side
3. DP Mixer Design
4. DP Mixer Characterization
4.1. Single-Tone Characterization
4.2. Two-Tone Characterization
4.3. FMCW Radar-Mode Setup
5. DP and Resistive Mixer Comparison
5.1. Resistive Mixer Characterization
5.2. Comparison for Radar-Mode Operation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maas, S. A GaAs MESFET Mixer with Very Low Intermodulation. IEEE Trans. Microw. Theory Tech. 1987, 35, 425–429. [Google Scholar] [CrossRef]
- Clements, M.S.; Pham, A.V.; Sacks, J.S.; Henderson, B.C.; Avery, S.E. Comparison of highly linear resistive mixers in depletion and enhancement mode GaAs and GaN pHEMTs at Ka band. In Proceedings of the IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 435–438. [Google Scholar]
- Do, M.; Seelmann-Eggebert, M.; Quay, R.; Langrez, D.; Cazaux, J. AlGaN/GaN mixer MMICs, and RF front-end receivers for C-, Ku-, and Ka-band space applications. In Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, France, 27–28 September 2010; pp. 57–60. [Google Scholar]
- Rojhani, N.; Passafiume, M.; Lucarelli, M.; Collodi, G.; Cidronali, A. Assessment of compressive sensing 2 × 2 mimo antenna design for millimeter-wave radar image enhancement. Electronics 2020, 9, 624. [Google Scholar] [CrossRef]
- Hefnawi, M.; Bray, J.; Bathurst, J.; Antar, Y. MIMO Radar Using a Vector Network Analyzer. Electronics 2019, 8, 1447. [Google Scholar] [CrossRef]
- Li, D.; Xia, Q.; Huang, J.; Li, J.; Chang, H.; Sun, B.; Liu, H. A 24 GHz Direct Conversion Receiver for FMCW Ranging Radar Based on Low Flicker Noise Mixer. Electronics 2021, 10, 722. [Google Scholar] [CrossRef]
- Passafiume, M.; Rojhani, N.; Collodi, G.; Cidronali, A. Modeling small UAV micro-Doppler signature using millimeter-wave FMCW radar. Electronics 2021, 10, 747. [Google Scholar] [CrossRef]
- Jiang, Y.; Lan, X.; Shi, J.; Han, Z.; Wang, X. Multi-Target Parameter Estimation of the FMCW-MIMO Radar Based on the Pseudo-Noise Resampling Method. Sensors 2022, 22, 9706. [Google Scholar] [CrossRef]
- Fortunati, S.; Sanguinetti, L.; Gini, F.; Greco, M.S.; Himed, B. Massive MIMO Radar for Target Detection. IEEE Trans. Signal Process. 2020, 68, 859–871. [Google Scholar] [CrossRef]
- Passafiume, M.; Collodi, G.; Cidronali, A. Design principles of batteryless transponder for vehicular dsrc at 5.8 GHZ. IEEE J. Radio Freq. Identif. 2020, 4, 491–505. [Google Scholar] [CrossRef]
- Cidronali, A.; Maddio, S.; Collodi, G.; Manes, G. Design trade-off for a compact 5.8 GHz DSRC transponder front-end. Microw. Opt. Technol. Lett. 2015, 57, 1187–1191. [Google Scholar] [CrossRef]
- Cidronali, A.; Pagnini, L.; Collodi, G.; Passafiume, M. A Highly Linear Ka-Band GaN-on-Si Active Balanced Mixer for Radar Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 4453–4464. [Google Scholar] [CrossRef]
- Pruvost, S.; Telliez, I.; Danneville, F.; Dambrine, G.; Rolland, N.; Pourchon, F. A 40 GHz single-ended down-conversion mixer in 0.13 μm SiGeC BiCMOS HBT. IEEE Microw. Wirel. Components Lett. 2005, 15, 496–498. [Google Scholar] [CrossRef]
- Panwar, P.; Pandit, N.; Pathak, N.P. Design, analysis and characterization of active HBT down conversion RF mixer for WLAN applications. In Proceedings of the IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), Bangalore, India, 24–26 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Salem, J.M.; Ha, D.S. A high temperature active GaN-HEMT downconversion mixer for downhole communications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 946–949. [Google Scholar] [CrossRef]
- Kallfass, I.; Eren, G.; Weber, R.; Wagner, S.; Schwantuschke, D.; Quay, R.; Ambacher, O. High linearity active GaN-HEMT down-converter MMIC for E-band radar applications. In Proceedings of the 9th European Microwave Integrated Circuit Conference, Rome, Italy, 6–7 October 2014; pp. 128–131. [Google Scholar] [CrossRef]
- Schafer, S.; Popović, Z. Multi-Frequency Measurements for Supply Modulated Transmitters. IEEE Trans. Microw. Theory Tech. 2015, 63, 2931–2941. [Google Scholar] [CrossRef]
- Joao, R.; Costa, F. Design technique for MESFET mixers for maximum conversion gain. IEEE Trans. Microw. Theory Tech. 1990, 38, 1972–1979. [Google Scholar] [CrossRef]
- De la Fuente, L.; Portilla, J.; Artal, E. Low noise Ku-band drain mixer using P-HEMT technology. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems, Surfing the Waves of Science and Technology (Cat. No.98EX196), Lisboa, Portugal, 7–10 September 1998; pp. 175–178. [Google Scholar] [CrossRef]
- Ellinger, F.; Rodoni, L.; Sialm, G.; Kromer, C.; von Buren, G.; Schmatz, M.; Menolfi, C.; Toifl, T.; Morf, T.; Kossel, M.; et al. 30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology. IEEE Trans. Microw. Theory Tech. 2004, 52, 1382–1391. [Google Scholar] [CrossRef]
- Gunnarsson, S.E.; Wadefalk, N.; Angelov, I.; Zirath, H.; Kallfass, I.; Leuther, A. A G-band (140–220 GHz) microstrip MMIC mixer operating in both resistive and drain-pumped mode. In Proceedings of the MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008; pp. 407–410. [Google Scholar] [CrossRef]
- Yang, H.Y.; Tsai, J.H.; Wang, C.H.; Lin, C.S.; Lin, W.H.; Lin, K.Y.; Huang, T.W.; Wang, H. Design and Analysis of a 0.8–77.5-GHz Ultra-Broadband Distributed Drain Mixer Using 0.13-μm CMOS Technology. IEEE Trans. Microw. Theory Tech. 2009, 57, 562–572. [Google Scholar] [CrossRef]
- Yang, H.Y.; Tsai, J.H.; Huang, T.W.; Wang, H. Analysis of a New 33–58-GHz Doubly Balanced Drain Mixer in 90-nm CMOS Technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 1057–1068. [Google Scholar] [CrossRef]
- Shiba, S.; Sato, M.; Matsumura, H.; Takahashi, T.; Suzuki, T.; Nakasha, Y.; Hara, N. An F-band fundamental mixer using 75-nm InP HEMTs for precise spectrum analysis. In Proceedings of the European Microwave Integrated Circuit Conference, Nuremberg, Germany, 6–8 October 2013; pp. 137–140. [Google Scholar]
- Song, I.; Lee, J.; Byeon, C.; Cho, S.; Kim, H.; Oh, I.; Park, C. 60 GHz Double-balanced drain-pumped up-conversion mixer using 90 nm CMOS. In Proceedings of the MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Lee, H.; Jeon, S. A GaAs p-HEMT Distributed Drain Mixer With Low LO Drive Power, High Isolation, and Zero Power Consumption. IEEE Access 2021, 9, 158420–158425. [Google Scholar] [CrossRef]
- Kim, J. A Wideband and Low-Power Distributed Cascode Mixer Using Inductive Feedback. Sensors 2022, 22, 9022. [Google Scholar] [CrossRef]
- Pagnini, L.; Collodi, G.; Cidronali, A. Analysis of a Single-Ended GaN-Based Drain-Pumped Mixer for Radar Applications. In Proceedings of the SIE 2022: 53rd Annual Meeting of the Italian Electronics Society, Rende, Italy, 5–7 September 2022; Cocorullo, G., Crupi, F., Limiti, E., Eds.; Springer: Cham, Switzerland, 2023; pp. 63–68. [Google Scholar]
- Ball, E.A. Investigation into the Relationship Between Conversion Gain, Local Oscillator Drive Level and DC Bias in a SiGe Transistor Transconductance Modulated Mixer at 24–28 GHz. In Proceedings of the Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 18–20 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ball, E.A. Predicting the Performance of a 26 GHz Transconductance Modulated Downconversion Mixer as a Function of LO Drive and DC Bias. Electronics 2022, 11, 2516. [Google Scholar] [CrossRef]
- Pedro, J.C.; Carvalho, N.B. Intermodulation Distortion in Microwave and Wireless Circuits; Artech House: Norwood, MA, USA, 2003. [Google Scholar]
- Maas, S.A. Two-tone intermodulation in diode mixers. IEEE Trans. Microw. Theory Tech. 1987, 35, 307–314. [Google Scholar] [CrossRef]
- Peng, S.; McCleer, P.J.; Haddad, G.I. Nonlinear models for the intermodulation analysis of FET mixers. IEEE Trans. Microw. Theory Tech. 1995, 43, 1037–1045. [Google Scholar] [CrossRef]
- Garcia, J.; De la Fuente, M.; Pedro, J.; Carvalho, N.; Newport, Y.; Mediavilla, A.; Tazon, A. Time-varying Volterra-series analysis of spectral regrowth and noise power ratio in FET mixers. IEEE Trans. Microw. Theory Tech. 2001, 49, 545–549. [Google Scholar] [CrossRef]
- Mollaalipour, M.; Miar-Naimi, H. An improved high linearity active CMOS mixer: Design and Volterra series analysis. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 2092–2103. [Google Scholar] [CrossRef]
- Pedro, J.; Perez, J. Accurate simulation of GaAs MESFET’s intermodulation distortion using a new drain-source current model. IEEE Trans. Microw. Theory Tech. 1994, 42, 25–33. [Google Scholar] [CrossRef]
- Pagnini, L.; Collodi, G.; Cidronali, A. A Mixer-Like Nonlinear Analysis for GaN HEMT Supply-Modulated Power Amplifier at 3.8 GHz. In Proceedings of the 17th European Microwave Integrated Circuits Conference (EuMIC), Milan, Italy, 26–27 September 2022; pp. 9–12. [Google Scholar] [CrossRef]
- Pagnini, L.; Collodi, G.; Passafiume, M.; Cidronali, A. A New Architecture of Broadband GaAs MMIC Balanced Mixer for Very High RF/IF Isolation for 0.5–18.5 GHz Signal Analysis. In Proceedings of the 17th European Microwave Integrated Circuits Conference (EuMIC), Milan, Italy, 26–27 September 2022; pp. 216–219. [Google Scholar] [CrossRef]
- Maas, S.; Crosmun, A. Modeling the gate I/V characteristic of a GaAs MESFET for Volterra-series analysis. IEEE Trans. Microw. Theory Tech. 1989, 37, 1134–1136. [Google Scholar] [CrossRef]
- Wolfspeed. 6-W RF Power GaN HEMT Rev. 3.4; Wolfspeed: Durham, NC, USA, 2022. [Google Scholar]
- Florian, C.; Cappello, T.; Santarelli, A.; Niessen, D.; Filicori, F.; Popović, Z. A Prepulsing Technique for the Characterization of GaN Power Amplifiers With Dynamic Supply Under Controlled Thermal and Trapping States. IEEE Trans. Microw. Theory Tech. 2017, 65, 5046–5062. [Google Scholar] [CrossRef]
- Kellogg, K.; Khandelwal, S.; Dunleavy, L.; Wang, J. Characterization of Thermal and Trapping Time Constants in a GaN HEMT. In Proceedings of the 94th ARFTG Microwave Measurement Symposium (ARFTG), San Antonio, TX, USA, 26–29 January 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Gibiino, G.P.; Florian, C.; Santarelli, A.; Cappello, T.; Popović, Z. Isotrap Pulsed IV Characterization of GaN HEMTs for PA Design. IEEE Microw. Wirel. Components Lett. 2018, 28, 672–674. [Google Scholar] [CrossRef]
- Florian, C.; Gibiino, G.P.; Santarelli, A. Characterization and Modeling of RF GaN Switches Accounting for Trap-Induced Degradation Under Operating Regimes. IEEE Trans. Microw. Theory Tech. 2018, 66, 5491–5500. [Google Scholar] [CrossRef]
- Cappello, T.; Florian, C.; Santarelli, A.; Popovic, Z. Linearization of a 500-W L-band GaN Doherty Power Amplifier by Dual-Pulse Trap Characterization. In Proceedings of the MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 905–908. [Google Scholar] [CrossRef]
- Angelotti, A.M.; Gibiino, G.P.; Florian, C.; Santarelli, A. Trapping Dynamics in GaN HEMTs for Millimeter-Wave Applications: Measurement-Based Characterization and Technology Comparison. Electronics 2021, 10, 137. [Google Scholar] [CrossRef]
Work | Technology | Frequency-Band | CG [dB] | IIP3 [dBm] | V [V] | P [mW] | P [dBm] | P-CG [dBm] |
---|---|---|---|---|---|---|---|---|
[18] | GaAs MESFET | X | +1.5 | - | +0.7 | 17 * | +10.5 | +9 |
[19] | GaAs pHEMT | Ku | +2.5 | 0 | +1.1 | - | +15 | +12.5 |
[20] | SOI CMOS | Ka | +4 * | 0 | 0 | +7.5 | +11.6 | |
[21] | GaAs mHEMT | G | * | - | +0.2 | 0.55 | +5 | +12 |
[24] | InP HEMT | F | - | 0 | 0 | +6 | +12.5 | |
This work | GaN HEMT | S | +10 | +11 | +3.5 | 87 | +20 | +10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagnini, L.; Collodi, G.; Cidronali, A. A GaN-HEMT Active Drain-Pumped Mixer for S-Band FMCW Radar Front-End Applications. Sensors 2023, 23, 4479. https://doi.org/10.3390/s23094479
Pagnini L, Collodi G, Cidronali A. A GaN-HEMT Active Drain-Pumped Mixer for S-Band FMCW Radar Front-End Applications. Sensors. 2023; 23(9):4479. https://doi.org/10.3390/s23094479
Chicago/Turabian StylePagnini, Lorenzo, Giovanni Collodi, and Alessandro Cidronali. 2023. "A GaN-HEMT Active Drain-Pumped Mixer for S-Band FMCW Radar Front-End Applications" Sensors 23, no. 9: 4479. https://doi.org/10.3390/s23094479
APA StylePagnini, L., Collodi, G., & Cidronali, A. (2023). A GaN-HEMT Active Drain-Pumped Mixer for S-Band FMCW Radar Front-End Applications. Sensors, 23(9), 4479. https://doi.org/10.3390/s23094479