Machine Learning for Postoperative Continuous Recovery Scores of Oncology Patients in Perioperative Care with Data from Wearables
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Details
2.2. Train-Test Split
2.3. Reference Recovery Scores Engineering
2.4. Feature Extraction
2.5. Machine Learning Model
3. Results
3.1. Feature Correlation with Reference Recovery Scores
3.2. Predictions on Independent Test Set
3.3. Usability in the Clinic
4. Discussion
4.1. Outlook
4.2. Comparison to the Literature
4.3. Future Work
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EWSs | Early warning scores |
LOS | Length of stay |
TRICA | Transitional care study 3 |
HR | Heart rate |
RR | Respiration rate |
PPG | Photoplethysmography |
HRV | Heart rate variability |
circ | Circadian rhythm |
actlevel | Activity level |
actcount | Activity counts |
AEE | Active energy expenditure |
SDNN | Standard deviation of normal-to-normal intervals |
RMSSD | Root mean square standard deviation of normal-to-normal intervals |
pNN50 | Percentage of normal-to-normal intervals that differ more than 50 ms |
VLF | Very-low-frequency range |
LF | Low-frequency range |
HF | High-frequency range |
LF/HF ratio | Ratio between low-frequency and high-frequency ranges |
HRR | Heart rate recovery |
bpm | Beats per minute |
CD | Clavien–Dindo |
MSE | Mean squared error |
SRCC | Spearman rank correlation coefficient |
References
- Boden, I.; Peng, C.; Lockstone, J.; Reeve, J.; Hackett, C.; Anderson, L.; Hill, C.; Winzer, B.; Gurusinghe, N.; Denehy, L. Validity and Utility Testing of a Criteria-led Discharge Checklist to Determine Post-operative Recovery after Abdominal Surgery: An International Multicentre Prospective Cohort Trial. World J. Surg. 2021, 45, 719–729. [Google Scholar] [CrossRef]
- Bae, S.; Dey, A.K.; Low, C.A. Using passively collected sedentary behavior to predict hospital readmission. In Proceedings of the UbiComp 2016—2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 616–621. [Google Scholar] [CrossRef]
- Badawi, O.; Breslow, M.J. Readmissions and Death after ICU Discharge: Development and Validation of Two Predictive Models. PLoS ONE 2012, 7, e48758. [Google Scholar] [CrossRef] [PubMed]
- Douiri, A.; Grace, J.; Sarker, S.J.; Tilling, K.; McKevitt, C.; Wolfe, C.D.A.; Rudd, A.G. Patient-specific prediction of functional recovery after stroke. Int. J. Stroke Off. J. Int. Stroke Soc. 2017, 12, 539–548. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hachesu, P.R.; Ahmadi, M.; Alizadeh, S.; Sadoughi, F. Use of Data Mining Techniques to Determine and Predict Length of Stay of Cardiac Patients. Healthc. Informatics Res. 2013, 19, 121. [Google Scholar] [CrossRef] [PubMed]
- Appelboom, G.; Yang, A.H.; Christophe, B.R.; Bruce, E.M.; Slomian, J.; Bruyère, O.; Bruce, S.S.; Zacharia, B.E.; Reginster, J.Y.; Connolly, E.S., Jr. The promise of wearable activity sensors to define patient recovery. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2014, 21, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Subbe, C.P.; Kruger, M.; Gemmel, L. Validation of a modified Early Warning Score in medical admissions. Q. J. Med. 2001, 94, 521–526. [Google Scholar] [CrossRef][Green Version]
- Browning, L.; Denehy, L.; Scholes, R.L. The quantity of early upright mobilisation performed following upper abdominal surgery is low: An observational study. Aust. J. Physiother. 2007, 53, 47–52. [Google Scholar] [CrossRef][Green Version]
- Simões, C.M.; Carmona, M.J.C.; Hajjar, L.A.; Vincent, J.L.; Landoni, G.; Belletti, A.; Vieira, J.E.; de Almeida, J.P.; de Almeida, E.P.; Ribeiro, U.; et al. Predictors of major complications after elective abdominal surgery in cancer patients. BMC Anesthesiol. 2018, 18, 49. [Google Scholar] [CrossRef][Green Version]
- Lawrence, V.A.; Hazuda, H.P.; Cornell, J.E.; Pederson, T.; Bradshaw, P.T.; Mulrow, C.D.; Page, C.P. Functional independence after major abdominal surgery in the elderly. J. Am. Coll. Surg. 2004, 199, 762–772. [Google Scholar] [CrossRef]
- Abeles, A.; Kwasnicki, R.M.; Pettengell, C.; Murphy, J.; Darzi, A. The relationship between physical activity and post-operative length of hospital stay: A systematic review. Int. J. Surg. 2017, 44, 295–302. [Google Scholar] [CrossRef]
- Mattlage, A.E.; Redlin, S.A.; Rippee, M.A.; Abraham, M.G.; Rymer, M.M.; Billinger, S.A. Use of Accelerometers to Examine Sedentary Time on an Acute Stroke Unit. J. Neurol. Phys. Ther. JNPT 2015, 39, 166–171. [Google Scholar] [CrossRef]
- Evans, D.; Hodgkinson, B.; Berry, J. Vital signs in hospital patients: A systematic review. Int. J. Nurs. Stud. 2001, 38, 643–650. [Google Scholar] [CrossRef]
- Agostini, P.J.; Naidu, B.; Rajesh, P.; Steyn, R.; Bishay, E.; Kalkat, M.; Singh, S. Potentially modifiable factors contribute to limitation in physical activity following thoracotomy and lung resection: A prospective observational study. J. Cardiothorac. Surg. 2014, 9, 128. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pedersen, M.M.; Bodilsen, A.C.; Petersen, J.; Beyer, N.; Andersen, O.; Lawson-Smith, L.; Kehlet, H.; Bandholm, T. Twenty-four-hour mobility during acute hospitalization in older medical patients. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 331–337. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hussey, J.M.; Yang, T.; Dowds, J.; O’Connor, L.; Reynolds, J.V.; Guinan, E.M. Quantifying postoperative mobilisation following oesophagectomy. Physiotherapy 2019, 105, 126–133. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, S.H.; Lee, K.S.; Shim, Y.M.; Kim, K.; Yang, P.S.; Kim, T.S. Esophageal resection: Indications, techniques, and radiologic assessment. Radiographics 2001, 21, 1119–1140. [Google Scholar] [CrossRef]
- ElShawi, R.; Sherif, Y.; Al-Mallah, M.; Sakr, S. Interpretability in healthcare: A comparative study of local machine learning interpretability techniques. Comput. Intell. 2021, 37, 1633–1650. [Google Scholar] [CrossRef]
- Jacobs, F.; Scheerhoorn, J.; Mestrom, E.; van der Stam, J.; Bouwman, R.A.; Nienhuijs, S. Reliability of heart rate and respiration rate measurements with a wireless accelerometer in postbariatric recovery. PLoS ONE 2021, 16, e0247903. [Google Scholar] [CrossRef]
- Van der Stam, J.A.; Mestrom, E.H.J.; Scheerhoorn, J.; Jacobs, F.; de Hingh, I.H.J.T.; van Riel, N.A.W.; Boer, A.K.; Scharnhorst, V.; Nienhuijs, S.W.; Bouwman, R.A. Accuracy of vital parameters measured by a wearable patch following major abdominal cancer surgery. Eur. J. Surg. Oncol. 2021, 48, 917–923. [Google Scholar] [CrossRef]
- Sengupta, R.; Narasimham, S.; Mato, B.; Meglic, M.; Perella, C.; Pamies, P.; Emery, P. Early and Accurate Diagnosis of Patient with Axial Spondyloarthritis Using Machine Learning: A Predictive Analysis from Electronic Health Records in United Kingdom [abstract]. Arthritis Rheumatol. 2021, 73. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Hanna, S.E.; Stratford, P.W.; Wessel, J.; Gollish, J.D. Preoperative Function and Gender Predict Pattern of Functional Recovery After Hip and Knee Arthroplasty. J. Arthroplast. 2006, 21, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D. The Clavien—Dindo Classification of Surgical Complications. In Treatment of Postoperative Complications After Digestive Surgery; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–17. [Google Scholar] [CrossRef]
- Davidson, S.; Villarroel, M.; Harford, M.; Finnegan, E.; Jorge, J.; Young, D.; Watkinson, P.; Tarassenko, L. Day-to-day progression of vital-sign circadian rhythms in the intensive care unit. Crit. Care 2021, 25, 156. [Google Scholar] [CrossRef]
- Welch, P.D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef][Green Version]
- Hristopher, C.; Ole, R.C.; Ugene, E.; Lackstone, H.B.; Ashkow, R.J.P.; Laire, C.; Nader, E.S.; Auer, S.L. Heart-Rate Recovery Immediately after Exercise as a Predictor of Mortality. New Engl. J. Med. 2008, 341, 1351–1357. [Google Scholar] [CrossRef]
- Huber, M.; Kurz, C.; Leidl, R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med. Informatics Decis. 2019, 19, 3. [Google Scholar] [CrossRef][Green Version]
- Van den Eijnden, M.A.C. Predicting Daily Post-Operative Recovery Scores of Oncology and Bariatric Patients with Vital Signs and Activity Metrics from Wearable Sensors Using a Machine Learning Approach. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, May 2022. Available online: https://research.tue.nl/en/studentTheses/predicting-daily-post-operative-recovery-scores-of-oncology-and-b (accessed on 3 January 2023).
- Lohsiriwat, V.; Prapasrivorakul, S.; Lohsiriwat, D. Perforated peptic ulcer: Clinical presentation, surgical outcomes, and the accuracy of the Boey scoring system in predicting postoperative morbidity and mortality. World J. Surg. 2009, 33, 80–85. [Google Scholar] [CrossRef]
- Weingarten, T.N.; Kor, D.J.; Gali, B.; Sprung, J. Predicting postoperative pulmonary complications in high-risk populations. Curr. Opin. Anaesthesiol. 2013, 26, 116–125. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kivrak, S.; Haller, G. Scores for preoperative risk evaluation of postoperative mortality. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 115–134. [Google Scholar] [CrossRef]
- Menzenbach, J.; Layer, Y.C.; Layer, Y.L.; Mayr, A.; Coburn, M.; Wittmann, M.; Hilbert, T. The level of postoperative care influences mortality prediction by the POSPOM score: A retrospective cohort analysis. PLoS ONE 2021, 16, e0257829. [Google Scholar] [CrossRef]
- Li, G.H.; Zhao, L.; Lu, Y.; Wang, W.; Ma, T.; Zhang, Y.X.; Zhang, H. Development and validation of a risk score for predicting postoperative delirium after major abdominal surgery by incorporating preoperative risk factors and surgical Apgar score. J. Clin. Anesth. 2021, 75, 110511. [Google Scholar] [CrossRef]
- Campagnini, S.; Liuzzi, P.; Mannini, A.; Basagni, B.; Macchi, C.; Carrozza, M.C.; Cecchi, F. Cross-validation of predictive models for functional recovery after post-stroke rehabilitation. J. Neuroeng. Rehabil. 2022, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Muralitharan, S.; Nelson, W.; Di, S.; McGillion, M.; Devereaux, P.J.; Barr, N.G.; Petch, J. Machine Learning-Based Early Warning Systems for Clinical Deterioration: Systematic Scoping Review. J. Med. Internet Res. 2021, 23, e25187. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Perez-Concha, O.; Coiera, E.; Martin-Sanchez, F.; Day, R.; Roffe, D.; Gallego, B. Real-time prediction of mortality, readmission, and length of stay using electronic health record data. J. Am. Med. Inform. Assoc. JAMIA 2016, 23, 553–561. [Google Scholar] [CrossRef] [PubMed][Green Version]
Variable | Training | Test |
---|---|---|
Total patients | 83 (66.4%) | 42 (33.6%) |
Female | 38 (66.7%) | 19 (33.3%) |
Male | 45 (66.2%) | 23 (33.8%) |
Patient with no complications | 55 (66.3%) | 28 (33.7%) |
Patient with one complication | 22 (66.7%) | 11 (33.3%) |
Patient with two complications | 4 (66.7%) | 2 (33.3%) |
Patient with three complications | 2 (66.7%) | 1 (33.3%) |
Surgery: ER | 14 (63.6%) | 8 (36.4%) |
Surgery: HIPEC | 13 (56.5%) | 10 (43.5%) |
Surgery: PPPD/Whipple | 13 (76.5%) | 4 (23.5%) |
Surgery: LAR with IORT | 13 (68.4%) | 6 (31.6%) |
Surgery: LAR without IORT | 3 (75%) | 1 (25%) |
Surgery: Other | 27 (67.5%) | 13 (32.5%) |
Age (mean) | 62.2 | 62.1 |
LOS (mean) | 11.3 | 10.3 |
Days | Number of Steps per Day (-) | Upright (Hours/Day) | Upright Delta | Average HRR-1 (bpm) | HRR-1 Delta | Circ. Rhythm Day–Night (bpm) |
---|---|---|---|---|---|---|
Day 1 | 20 | 0 | 0 | inactive | - | 2.08 |
Day 2 | 85 | 0 | 0 | inactive | - | 6.76 |
Day 3 | 141 | 0 | 0 | inactive | - | 6.3 |
... | ||||||
Day 7 | 1158 | 0.85 | −0.09 | 12 | 1.7 | 9.23 |
Day 8 | 1084 | 0.77 | −0.08 | 14.3 | 1.3 | −2.3 |
Day 9 | 1438 | 0.77 | 0 | 8.2 | −6.1 | 2.00 |
Day 10 | 809 | 0.34 | −0.43 | 13.6 | 5.4 | 2.70 |
Day 11 | 1302 | 0.51 | 0.17 | 7.6 | −6 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Eijnden, M.A.C.; van der Stam, J.A.; Bouwman, R.A.; Mestrom, E.H.J.; Verhaegh, W.F.J.; van Riel, N.A.W.; Cox, L.G.E. Machine Learning for Postoperative Continuous Recovery Scores of Oncology Patients in Perioperative Care with Data from Wearables. Sensors 2023, 23, 4455. https://doi.org/10.3390/s23094455
van den Eijnden MAC, van der Stam JA, Bouwman RA, Mestrom EHJ, Verhaegh WFJ, van Riel NAW, Cox LGE. Machine Learning for Postoperative Continuous Recovery Scores of Oncology Patients in Perioperative Care with Data from Wearables. Sensors. 2023; 23(9):4455. https://doi.org/10.3390/s23094455
Chicago/Turabian Stylevan den Eijnden, Meike A. C., Jonna A. van der Stam, R. Arthur Bouwman, Eveline H. J. Mestrom, Wim F. J. Verhaegh, Natal A. W. van Riel, and Lieke G. E. Cox. 2023. "Machine Learning for Postoperative Continuous Recovery Scores of Oncology Patients in Perioperative Care with Data from Wearables" Sensors 23, no. 9: 4455. https://doi.org/10.3390/s23094455
APA Stylevan den Eijnden, M. A. C., van der Stam, J. A., Bouwman, R. A., Mestrom, E. H. J., Verhaegh, W. F. J., van Riel, N. A. W., & Cox, L. G. E. (2023). Machine Learning for Postoperative Continuous Recovery Scores of Oncology Patients in Perioperative Care with Data from Wearables. Sensors, 23(9), 4455. https://doi.org/10.3390/s23094455