Fabrication of Ultra-Sharp Tips by Dynamic Chemical Etching Process for Scanning Near-Field Microwave Microscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Etching Setup
2.2. Chemical Etching Process
2.3. Tip Formation Dynamics
3. Results and Discussion
3.1. Dynamic Etching
3.2. Near-Field Analysis
3.3. SNMM Imaging Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imtiaz, A.; Anlage, S.M. Effect of tip geometry on contrast and spatial resolution of the near-field microwave microscope. J. Appl. Phys. 2006, 100, 044304. [Google Scholar] [CrossRef]
- Siegel, P.H. Microwaves Are Everywhere: “SMM: Nano-Microwaves”. IEEE J. Microwaves 2021, 1, 838–852. [Google Scholar] [CrossRef]
- Synge, E.H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. J. Sci. 1928, 6, 356–362. [Google Scholar] [CrossRef]
- Ash, E.; Nicholls, G. Super-resolution Aperture Scanning Microscope. Nature 1972, 237, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Anlage, S.M.; Talanov, V.V.; Schwartz, A.R. Principles of Near-Field Microwave Microscopy. In Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale; Kalinin, S., Gruverman, A., Eds.; Springer: New York, NY, USA, 2007; pp. 215–253. [Google Scholar]
- Gao, C.; Xiang, X.D. Quantitative microwave near-field microscopy of dielectric properties. Rev. Sci. Instrum. 1998, 69, 3846–3851. [Google Scholar]
- Michalas, L.; Brinciotti, E.; Lucibello, A.; Gramse, G.; Joseph, C.H.; Kienberger, F.; Proietti, E.; Marcelli, R. De-embedding techniques for nanoscale characterization of semiconductors by scanning microwave microscopy. Microelectron. Eng. 2016, 159, 64–69. [Google Scholar] [CrossRef]
- Brinciotti, E.; Gramse, G.; Hommel, S.; Schweinboeck, T.; Altes, A.; Fenner, M.A.; Smoliner, J.; Kasper, M.; Badino, G.; Tuca, S.S.; et al. Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy. Nanoscale 2015, 7, 14715–14722. [Google Scholar] [CrossRef]
- Fabi, G.; Jin, X.; Pavoni, E.; Joseph, C.H.; Di Donato, A.; Mencarelli, D.; Wang, X.; Al Hadi, R.; Morini, A.; Hwang, J.C.M.; et al. Quantitative Characterization of Platinum Diselenide Electrical Conductivity With an Inverted Scanning Microwave Microscope. IEEE Trans. Microw. Theory Tech. 2021, 69, 3348–3359. [Google Scholar] [CrossRef]
- Wu, D.; Li, W.; Rai, A.; Wu, X.; Movva, H.C.P.; Yogeesh, M.N.; Chu, Z.; Banerjee, S.K.; Akinwande, D.; Lai, K. Visualization of Local Conductance in MoS2/WSe2 Heterostructure Transistors. Nano Lett. 2019, 19, 1976–1981. [Google Scholar] [CrossRef]
- Tselev, A.; Yu, P.; Cao, Y.; Dedon, L.R.; Martin, L.W.; Kalinin, S.V.; Maksymovych, P. Microwave a.c. conductivity of domain walls in ferroelectric thin films. Nat. Commun. 2016, 7, 11630. [Google Scholar]
- Wu, X.; Du, K.; Zheng, L.; Wu, D.; Cheong, S.W.; Lai, K. Microwave conductivity of ferroelectric domains and domain walls in a hexagonal rare-earth ferrite. Phys. Rev. B 2018, 98, 081409. [Google Scholar] [CrossRef]
- Joseph, C.H.; Gramse, G.; Proietti, E.; Sardi, G.M.; Morley, G.W.; Kienberger, F.; Bartolucci, G.; Marcelli, R. Local Characterization of Ferromagnetic Resonance in Bulk and Patterned Magnetic Materials Using Scanning Microwave Microscopy. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Joseph, C.H.; Luzi, F.; Azman, S.N.A.; Forcellese, P.; Pavoni, E.; Fabi, G.; Mencarelli, D.; Gentili, S.; Pierantoni, L.; Morini, A.; et al. Nanoscale Characterization of Graphene Oxide-Based Epoxy Nanocomposite Using Inverted Scanning Microwave Microscopy. Sensors 2022, 22, 9608. [Google Scholar] [CrossRef]
- Biagi, M.C.; Fabregas, R.; Gramse, G.; Van Der Hofstadt, M.; Juárez, A.; Kienberger, F.; Fumagalli, L.; Gomila, G. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy. ACS Nano 2016, 10, 280–288. [Google Scholar] [CrossRef]
- Farina, M.; Hwang, J.C.M. Scanning Microwave Microscopy for Biological Applications: Introducing the State of the Art and Inverted SMM. IEEE Microw. Mag. 2020, 21, 52–59. [Google Scholar] [CrossRef]
- Jin, X.; Farina, M.; Wang, X.; Fabi, G.; Cheng, X.; Hwang, J.C.M. Quantitative Scanning Microwave Microscopy of the Evolution of a Live Biological Cell in a Physiological Buffer. IEEE Trans. Microw. Theory Tech. 2019, 67, 5438–5445. [Google Scholar] [CrossRef]
- Gramse, G.; Brinciotti, E.; Lucibello, A.; Patil, S.B.; Kasper, M.; Rankl, C.; Giridharagopal, R.; Hinterdorfer, P.; Marcelli, R.; Kienberger, F. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy. Nanotechnology 2015, 26, 135701. [Google Scholar] [CrossRef]
- Plassard, C.; Bourillot, E.; Rossignol, J.; Lacroute, Y.; Lepleux, E.; Pacheco, L.; Lesniewska, E. Detection of defects buried in metallic samples by scanning microwave microscopy. Phys. Rev. B 2011, 83, 121409. [Google Scholar] [CrossRef]
- Frait, Z. The use of high-frequency modulation in studying ferromagnetic resonance. Czech J. Phys. 1959, 9, 403–404. [Google Scholar] [CrossRef]
- Soohoo, R.F. A Microwave Magnetic Microscope. J. Appl. Phys. 1962, 33, 1276–1277. [Google Scholar] [CrossRef]
- Rosner, B.T.; van der Weide, D.W. High-frequency near-field microscopy. Rev. Sci. Instrum. 2002, 73, 2505–2525. [Google Scholar] [CrossRef]
- Lee, Y.; Alu, A.; Zhang, J.X. Efficient apertureless scanning probes using patterned plasmonic surfaces. Opt. Express 2011, 19, 25990–25999. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wei, T.; Xiang, X.; Wallace-Freedman, W.G.; Schultz, P.G. Scanning tip microwave near-field microscope. Appl. Phys. Lett. 1996, 68, 3506–3508. [Google Scholar] [CrossRef]
- Tabib-Azar, M.; Su, D.P.; Pohar, A.; LeClair, S.R.; Ponchak, G. 0.4 μm spatial resolution with 1 GHz (λ=30 cm) evanescent microwave probe. Rev. Sci. Instrum. 1999, 70, 1725–1729. [Google Scholar] [CrossRef]
- Tabib-Azar, M.; Shoemaker, N.S.; Harris, S. Non-destructive characterization of materials by evanescent microwaves. Meas. Sci. Technol. 1993, 4, 583. [Google Scholar] [CrossRef]
- Steinhauer, D.E.; Vlahacos, C.P.; Dutta, S.K.; Feenstra, B.J.; Wellstood, F.C.; Anlage, S.M. Quantitative imaging of sheet resistance with a scanning near-field microwave microscope. Appl. Phys. Lett. 1998, 72, 861–863. [Google Scholar] [CrossRef]
- Lai, K.; Kundhikanjana, W.; Kelly, M.A.; Shen, Z.X. Nanoscale microwave microscopy using shielded cantilever probes. Appl. Nanosci. 2011, 1, 13–18. [Google Scholar] [CrossRef]
- Wang, Y.; Bettermann, A.D.; van der Weide, D.W. Process for scanning near-field microwave microscope probes with integrated ultratall coaxial tips. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2007, 25, 813–816. [Google Scholar] [CrossRef]
- Weber, J.C.; Blanchard, P.T.; Sanders, A.W.; Imtiaz, A.; Wallis, T.M.; Coakley, K.J.; Bertness, K.A.; Kabos, P.; Sanford, N.A.; Bright, V.M. Gallium nitride nanowire probe for near-field scanning microwave microscopy. Appl. Phys. Lett. 2014, 104, 023113. [Google Scholar] [CrossRef]
- Grant, J.P.; Clarke, R.N.; Symm, G.T.; Spyrou, N.M. A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements. J. Phys. E Sci. Instrum. 1989, 22, 757. [Google Scholar] [CrossRef]
- Joseph, C.H.; Subramanian, V. Novel Phase Based Feedback Control for Constant Height Mode Operation in Scanning Near-Field Microwave Microscopy. In Electromagnetic Nondestructive Evaluation XXII; Tamburrino, A., Deng, Y., Chakrapani, S., Eds.; Studies in Applied Electromagnetics and Mechanics; IOS Press: Bristol, UK, 2019; Volume 44, pp. 20–25. [Google Scholar]
- Lucibello, A.; Sardi, G.M.; Capoccia, G.; Proietti, E.; Marcelli, R.; Kasper, M.; Gramse, G.; Kienberger, F. A broadband toolbox for scanning microwave microscopy transmission measurements. Rev. Sci. Instrum. 2016, 87, 053701. [Google Scholar] [CrossRef]
- SMA Series. Available online: http://www.sricomworld.in/smaseries.html (accessed on 8 February 2023).
- Wang, Z.; Che, J.; Ye, C. Application of ferric chloride both as oxidant and complexant to enhance the dissolution of metallic copper. Hydrometallurgy 2010, 105, 69–74. [Google Scholar] [CrossRef]
- Alimov, M.M.; Kornev, K.G. Meniscus on a shaped fibre: Singularities and hodograph formulation. Proc. R. Soc. Math. Phys. Eng. Sci. 2014, 470, 20140113. [Google Scholar] [CrossRef]
- Tang, Y.; Cheng, S. The meniscus on the outside of a circular cylinder: From microscopic to macroscopic scales. J. Colloid Interface Sci. 2019, 533, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Somlyai-Sipos, L.; Baumli, P. Wettability of Metals by Water. Metals 2022, 12, 1274. [Google Scholar] [CrossRef]
- Golosovsky, M.; Maniv, E.; Davidov, D.; Frenkel, A. Near-field of a scanning aperture microwave probe: A 3-D finite element analysis. IEEE Trans. Instrum. Meas. 2002, 51, 1090–1096. [Google Scholar] [CrossRef]
- Steinhauer, D.E.; Vlahacos, C.P.; Wellstood, F.C.; Anlage, S.M.; Canedy, C.; Ramesh, R.; Stanishevsky, A.; Melngailis, J. Imaging of microwave permittivity, tunability, and damage recovery in (Ba,Sr)TiO3 thin films. Appl. Phys. Lett. 1999, 75, 3180–3182. [Google Scholar] [CrossRef]
- Capoccia, G.; Sardi, G.M.; Marcelli, R.; Proietti, E. Near field microwave microscopy for MEMS and micro-electronic device characterization. In Proceedings of the 2018 Symposium on Design, Test, Integration and Packaging of MEMS and MOEMS (DTIP), Rome, Italy, 22–25 May 2018; pp. 1–4. [Google Scholar]
- Sardi, G.M.; Lucibello, A.; Kasper, M.; Gramse, G.; Proietti, E.; Kienberger, F.; Marcelli, R. Optimization of the imaging response of scanning microwave microscopy measurements. Appl. Phys. Lett. 2015, 107, 033107. [Google Scholar] [CrossRef]
Velocity (mm/sec) | Total no. of Cycles | Time for 100 Cycles (min) | Insertion Depth (mm) |
---|---|---|---|
1 | 1000 | 10:59 | 0.5 |
2 | 1000 | 4:59 | 0.8 |
4 | 1000 | 3:42 | 0.7 |
Concentration (%) | Total no. of Cycles | Velocity (mm/sec) | Time for 100 Cycles (min) | Insertion Depth (mm) |
---|---|---|---|---|
40 | 650 | 2 | 4:59 | 0.7 |
30 | 850 | 2 | 4:59 | 0.7 |
20 | 900 | 2 | 4:59 | 0.7 |
10 | 1050 | 2 | 4:59 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, C.H.; Capoccia, G.; Lucibello, A.; Proietti, E.; Sardi, G.M.; Bartolucci, G.; Marcelli, R. Fabrication of Ultra-Sharp Tips by Dynamic Chemical Etching Process for Scanning Near-Field Microwave Microscopy. Sensors 2023, 23, 3360. https://doi.org/10.3390/s23063360
Joseph CH, Capoccia G, Lucibello A, Proietti E, Sardi GM, Bartolucci G, Marcelli R. Fabrication of Ultra-Sharp Tips by Dynamic Chemical Etching Process for Scanning Near-Field Microwave Microscopy. Sensors. 2023; 23(6):3360. https://doi.org/10.3390/s23063360
Chicago/Turabian StyleJoseph, C. H., Giovanni Capoccia, Andrea Lucibello, Emanuela Proietti, Giovanni Maria Sardi, Giancarlo Bartolucci, and Romolo Marcelli. 2023. "Fabrication of Ultra-Sharp Tips by Dynamic Chemical Etching Process for Scanning Near-Field Microwave Microscopy" Sensors 23, no. 6: 3360. https://doi.org/10.3390/s23063360
APA StyleJoseph, C. H., Capoccia, G., Lucibello, A., Proietti, E., Sardi, G. M., Bartolucci, G., & Marcelli, R. (2023). Fabrication of Ultra-Sharp Tips by Dynamic Chemical Etching Process for Scanning Near-Field Microwave Microscopy. Sensors, 23(6), 3360. https://doi.org/10.3390/s23063360