Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Negrello, M.; Hopwood, R.; De Zotti, G.; Cooray, A.; Verma, A.; Bock, J.; Frayer, D.T.; Gurwell, M.A.; Omont, A.; Neri, R.; et al. The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies. Science 2010, 330, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cakmakyapan, S.; Lin, Y.J.; Javadi, H.; Jarrahi, M. Room-temperature heterodyne terahertz detection with quantum-level sensitivity. Nat. Astron 2019, 3, 977–982. [Google Scholar] [CrossRef]
- Lara-Avila, S.; Danilov, A.; Golubev, D.; He, H.; Kim, K.H.; Yakimova, R.; Lombardi, F.; Bauch, T.; Cherednichenko, S.; Kubatkin, S. Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene. Nat. Astron 2019, 3, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; et al. Wireless sub-THz communication system with high data rate. Nat. Photonics 2013, 7, 977–981. [Google Scholar] [CrossRef]
- Mueller, T.; Xia, F.N.A.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Gupta, N.; Kedia, J.; Sharma, A. Emerging nanostructured infrared absorbers enabling cost-effective image sensing: A review. Opt. Eng. 2021, 60, 090901. [Google Scholar] [CrossRef]
- Martyniuk, P.; Rogalski, A.; Krishna, S. Interband Quantum Cascade Infrared Photodetectors: Current Status and Future Trends. Phys. Rev. Appl. 2022, 17, 027001. [Google Scholar] [CrossRef]
- Rogalski, A. Scaling infrared detectors-status and outlook. Rep. Prog. Phys. 2022, 85, 126501. [Google Scholar] [CrossRef]
- Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W. Trends in Performance Limits of the HOT Infrared Photodetectors. Appl. Sci. 2021, 11, 501. [Google Scholar] [CrossRef]
- Sun, Y.F.; Sun, J.D.; Zhou, Y.; Tan, R.B.; Zeng, C.H.; Xue, W.; Qin, H.; Zhang, B.S.; Wu, D.M. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas. Appl. Phys. Lett. 2011, 98, 252103. [Google Scholar] [CrossRef]
- Sun, J.D.; Sun, Y.F.; Wu, D.M.; Cai, Y.; Qin, H.; Zhang, B.S. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 2012, 100, 013506. [Google Scholar] [CrossRef]
- Jin, M.; Wang, Y.; Chai, M.; Chen, C.; Zhao, Z.; He, T. Terahertz Detectors Based on Carbon Nanomaterials. Adv. Funct Mater. 2021, 32, 2107499. [Google Scholar] [CrossRef]
- Sizov, F.F.; Reva, V.P.; Golenkov, A.G.; Zabudsky, V.V. Uncooled Detectors Challenges for THz/sub-THz Arrays Imaging. J. Infrared Millim Te 2011, 32, 1192–1206. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.L.; Wang, L.; Chen, X.S.; Liu, C.L.; Tang, W.W.; Guo, C.; Wang, J.; Lu, W. Graphene-based broadband terahertz detector integrated with a square-spiral antenna. Opt. Lett. 2018, 43, 1647–1650. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Morozov, S.V.; Mohinddin, T.M.G.; Ponomarenko, L.A.; Elias, D.C.; Yang, R.; Barbolina, I.I.; Blake, P.; Booth, T.J.; Jiang, D. Electronic Properties of Graphene; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.Q.; Wang, Y.X.; Zhao, Z.R.; Chen, Z.Q.; Sun, J.L. Terahertz-induced photothermoelectric response in graphene-metal contact structures. J. Phys. D Appl. Phys. 2016, 49, 425101. [Google Scholar] [CrossRef]
- Wei, Z.; Ma, R.; Chen, Q.; Xia, M.; Ng, J.; Wang, A.; Xie, Y.H. The electro-mechanical responses of suspended graphene ribbons for electrostatic discharge applications. Appl. Phys. Lett. 2016, 108, 1304. [Google Scholar] [CrossRef] [Green Version]
- Spirito, D.; Coquillat, D.; De Bonis, S.L.; Lombardo, A.; Bruna, M.; Ferrari, A.C.; Pellegrini, V.; Tredicucci, A.; Knap, W.; Vitiello, M.S. High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 2014, 104, 061111. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.Y.; Muthee, M.; Chen, S.Y.; Yngvesson, S.K.; Yan, J. Antenna Enhanced Graphene THz Emitter and Detector. Nano Lett. 2015, 15, 5295–5301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryzhii, V.; Ryzhii, M.; Shur, M.S.; Mitin, V.; Satou, A.; Otsuji, T. Resonant plasmonic terahertz detection in graphene split-gate field-effect transistors with lateral p-n junctions. J. Phys. D Appl. Phys. 2016, 49, 315103. [Google Scholar] [CrossRef] [Green Version]
- Gouider, F.; Salman, M.; Gothlich, M.; Schmidt, H.; Ahlers, F.J.; Haug, R.; Nachtwei, G. Terahertz Detectors based on graphene. J. Phys. Conf. Ser. 2013, 456, 012011. [Google Scholar] [CrossRef]
- Yang, X.X.; Vorobiev, A.; Generalov, A.; Andersson, M.A.; Stake, J. A flexible graphene terahertz detector. Appl. Phys. Lett. 2017, 111, 021102. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.A.A.; Abdalla, M.A.; Ibrahim, A.A. Enhanced Gain Tunable Two Elements Antenna Array Based on Graphene. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 471–472. [Google Scholar]
- Liu, Y.-Q.; Li, L.; Yin, H. Long-Range Spoof Surface Plasmons(LRSSP) on the Asymmetric Double Metal Gratings. IEEE Photonics J. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Li, L.; Yin, H. Surface plasmon dispersion and modes on the graphene metasurface with periodical ribbon arrays. Mater. Res. Express 2020, 7, 075801. [Google Scholar] [CrossRef]
- Asgari, M.; Riccardi, E.; Balci, O.; De Fazio, D.; Shinde, S.M.; Zhang, J.C.; Mignuzzi, S.; Koppens, F.H.L.; Ferrari, A.C.; Viti, L.; et al. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. Acs Nano 2021, 15, 17966–17976. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.X.; Zhao, Z.R. Monolithic Metamaterial-Integrated Graphene Terahertz Photodetector with Wavelength and Polarization Selectivity. Acs Nano 2022, 16, 17263–17273. [Google Scholar] [CrossRef]
- Fakharian, M.M. A graphene-based multi-functional terahertz antenna. Optik 2022, 251, 168431. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. -Rev. Sect. Phys. Lett. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Wang, L.; Han, L.; Guo, W.; Zhang, L.; Yao, C.; Chen, Z.; Chen, Y.; Guo, C.; Zhang, K.; Kuo, C.N.; et al. Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light Sci. Appl. 2022, 11, 53. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, Z.; Zhang, L.; Chen, Y.; Wang, D.; Jiang, M.; D’Olimpio, G.; Han, L.; Yao, C.; Chen, Z.; et al. Ultrasensitive Self-Driven Terahertz Photodetectors Based on Low-Energy Type-II Dirac Fermions and Related Van der Waals Heterojunctions. Small 2023, 19, e2205329. [Google Scholar] [CrossRef]
- Xu, H.; Guo, C.; Zhang, J.Z.; Guo, W.L.; Hu, W.D.; Wang, L.; Chen, G.; Chen, X.S.; Lu, W. PtTe2-Based Type-II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small 2019, 15, e1903362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zhang, K.; Lv, X.; Wang, L.; Zhang, L.; Han, L.; Xing, H. Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure. Sensors 2023, 23, 3203. https://doi.org/10.3390/s23063203
Jiang M, Zhang K, Lv X, Wang L, Zhang L, Han L, Xing H. Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure. Sensors. 2023; 23(6):3203. https://doi.org/10.3390/s23063203
Chicago/Turabian StyleJiang, Mengjie, Kaixuan Zhang, Xuyang Lv, Lin Wang, Libo Zhang, Li Han, and Huaizhong Xing. 2023. "Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure" Sensors 23, no. 6: 3203. https://doi.org/10.3390/s23063203
APA StyleJiang, M., Zhang, K., Lv, X., Wang, L., Zhang, L., Han, L., & Xing, H. (2023). Monolayer Graphene Terahertz Detector Integrated with Artificial Microstructure. Sensors, 23(6), 3203. https://doi.org/10.3390/s23063203