Mode-Locked Fiber Laser Sensors with Orthogonally Polarized Pulses Circulating in the Cavity
Abstract
:1. Introduction
1.1. Mode-Locking and Frequency Combs
1.2. Mode-Locked Lasers for IPI
1.3. IPI in Fiber Lasers
1.4. Passive Mode-Locking in Fiber Lasers
1.5. Deadband in IPI
2. Implementation of IPI in Mode-Locked Ring Fiber Lasers
2.1. Parallel Polarization
2.2. Orthogonal Polarization
2.3. Beat-Note Measurement
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CW | Clockwise |
CCW | Counterclockwise |
PM | Polarization Maintaining |
CNT | Carbon Nanotube |
PBS | Polarizing Beam Splitter |
OC | Optical Coupler |
WDM | Wavelength Division Multiplexer |
SA | Saturable Absorber |
Col | Collimator |
G | Gain |
RF | Radio Frequency |
IPI | Intracavity Phase Interferometry |
Gyro | Gyroscope |
CEO | Carrier Envelope Offset |
References
- Fortier, T.; Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 153. [Google Scholar] [CrossRef] [Green Version]
- Udem, T.; Holzwarth, R.; Hönsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.T.; Udem, T.; Holzwarth, R.; Sizmann, A.; Pasquini, L.; Araujo-Hauck, C.; Dekker, H.; D’Odorico, S.; Fischer, M.; Hänsch, T.W.; et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc. 2007, 380, 839–847. [Google Scholar] [CrossRef]
- Weichman, M.L.; Changala, P.B.; Ye, J.; Chen, Z.; Yan, M.; Picqué, N. Broadband molecular spectroscopy with optical frequency combs. J. Mol. Spectrosc. 2019, 355, 66–78. [Google Scholar] [CrossRef]
- Leopardi, H.; Davila-Rodriguez, J.; Quinlan, F.; Olson, J.; Sherman, J.A.; Diddams, S.A.; Fortier, T.M. Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability. Optica 2017, 4, 879–885. [Google Scholar]
- Zhu, X.; Lenzner, M.; Diels, J.C. Phase nanoscopy with correlated frequency combs. Sensors 2023, 23, 301. [Google Scholar] [CrossRef]
- Hendrie, J.; Hsui, N.; Diels, J.C. Control of Frequency Combs with Passive Resonators. Sensors 2023, 23, 1066. [Google Scholar] [CrossRef]
- Horstman, L.; Diels, J.C. Intracavity measurement sensitivity enhancement without runaway noise. Sensors 2021, 21, 8473. [Google Scholar] [CrossRef]
- Horstman, L.; Hsu, N.; Hendrie, J.; Smith, D.; Diels, J.C. Exceptional points and the active laser gyroscope. Photonics Res. 2020, 8, 252–256. [Google Scholar] [CrossRef]
- Zavadilová, A.; Kubecek, V.; Vyhlidal, D. Synchronously Intracavity-Pumped Picosecond Optical Parametric Oscillators for Sensors. Sensors 2022, 22, 3200. [Google Scholar] [CrossRef]
- Krylov, A.A.; Chernykh, D.S.; Obraztsova, E.D. Colliding-pulse hybridly mode-locked erbium-doped all-fiber soliton gyrolaser. Laser Phys. 2018, 28, 015103. [Google Scholar] [CrossRef]
- Arissian, L.; Diels, J.C. Intracavity phase interferometry: Frequency comb sensors inside a laser cavity. Laser Photonics Rev. 2014, 8, 799–826. [Google Scholar] [CrossRef]
- Afkhamiardakani, H.; Diels, J. Controlling group and phase velocities in bidirectional mode-locked fiber lasers. Opt. Lett. 2019, 44, 2903–2906. [Google Scholar] [CrossRef] [Green Version]
- Afkhamiardakani, H.; Diels, J. Passive Q-switching Based on Nonlinear Effect of Multimode Interference in Tapered Fiber. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 5–10 May 2019. [Google Scholar]
- Isomaki, A.; Guina, M.D.; Tuomisto, P.; Okhotnikov, O.G. Fiber laser mode-locked with a semiconductor saturable absorber etalon operating in transmission. IEEE Photonics Technol. Lett. 2006, 18, 2150–2152. [Google Scholar] [CrossRef]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes. J. Light. Technol. 2004, 22, 51. [Google Scholar] [CrossRef]
- Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene Mode-Locked Ultrafast Laser. ACS Nano 2010, 4, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, C.; Huang, H.; Chen, S.; Tang, P.; Wang, Z.; Lu, S.; Zhang, H.; Wen, S.; Tang, D. Self-Assembled Topological Insulator: Bi2 Se3 Membrane as a Passive Q-Switcher in an Erbium-Doped Fiber Laser. J. Light. Technol. 2013, 31, 2857–2863. [Google Scholar] [CrossRef]
- Doran, N.J.; Wood, D. Nonlinear-optical loop mirror. Opt. Lett. 1988, 13, 56–58. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Yamashita, S. A Tutorial on Nonlinear Photonic Applications of Carbon Nanotube and Graphene. J. Light. Technol. 2012, 30, 427–447. [Google Scholar] [CrossRef]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporation carbon nanotubes. In Proceedings of the Conference on Optical Fiber Communications, Atlanta, GA, USA, 23–28 March 2003; Volume 54. [Google Scholar]
- Yamashita, S.; Inoue, Y.; Maruyam, S.; Murakami, Y.; Yaguchi, H.; Jablonski, M.; Set, S.Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Lett. 2004, 29, 1581–1583. [Google Scholar] [CrossRef] [PubMed]
- Kieu, K.; Mansuripur, M. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Optics Lett. 2007, 32, 2242–2244. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W.; Windeler, R.S.; DiGiovanni, D.J. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express 2007, 15, 9176–9183. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.W.; Yamashita, S.; Goh, C.S.; Set, S.Y. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Opt. Lett. 2007, 32, 148–150. [Google Scholar] [CrossRef]
- Kashiwagi, K.; Yamashita, S. Deposition of carbon nanotubes around microfiber via evanascent light. Opt. Express 2009, 17, 18364–18370. [Google Scholar] [CrossRef]
- Popa, D.; Sun, Z.; Hasan, T.; Cho, W.B.; Wang, F.; Torrisi, F.; Ferrari, A.C. 74-fs nanotube-mode-locked fiber laser. Appl. Phys. Lett. 2012, 101, 153107. [Google Scholar] [CrossRef]
- Nishizawa, N.; Seno, Y.; Sumimura, K.; Sakakibara, Y.; Itoga, E.; Kataura, H.; Itoh, K. All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber. Opt. Express 2008, 16, 9429–9435. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, S.Y.; Rotermund, F.; Lee, K.; Yeom, D.I. All-Polarization Maintaining Passively Mode-Locked Fiber Laser Using Evanescent Field Interaction With Single-Walled Carbon Nanotube Saturable Absorber. J. Light. Technol. 2016, 34, 3510–3515. [Google Scholar] [CrossRef]
- Schmitt-Sody, A.; Velten, A.; Masuda, K.; Diels, J.C. Intra-cavity mode locked Laser Magnetometer. Opt. Commun. 2010, 283, 3339–3341. [Google Scholar] [CrossRef]
- Sagnac, M.G. L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. Comptes Rendus 1913, 157, 708–710. [Google Scholar]
- Sagnac, M.G. Sur la preuve de la réalité de l’éther lumineux démontré par l’expérience de l’interférographe tournant. Comptes Rendus 1913, 157, 1410–1413b. [Google Scholar]
- Diels, J.C.; Rudolph, W. Ultrashort Laser Pulse Phenomena, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 0-12-215492-4. [Google Scholar]
- Fork, R.L.; Shank, C.V. Generation of optical pulses shorter than 0.1 ps by colliding pulse mode-locking. Appl. Phys. Lett. 1981, 38, 671. [Google Scholar] [CrossRef]
- Dietel, W.; Fontaine, J.J.; Diels, J.C. Intracavity pulse compression with glass: A new method of generating pulses shorter than 60 femtoseconds. Opt. Lett. 1983, 8, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.J.; Dietel, W.; Diels, J.C. Chirp in a mode-locked ring dye laser. IEEE J. Quantum Electron. 1983, 19, 1467–1469. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afkhamiardakani, H.; Diels, J.-C. Mode-Locked Fiber Laser Sensors with Orthogonally Polarized Pulses Circulating in the Cavity. Sensors 2023, 23, 2531. https://doi.org/10.3390/s23052531
Afkhamiardakani H, Diels J-C. Mode-Locked Fiber Laser Sensors with Orthogonally Polarized Pulses Circulating in the Cavity. Sensors. 2023; 23(5):2531. https://doi.org/10.3390/s23052531
Chicago/Turabian StyleAfkhamiardakani, Hanieh, and Jean-Claude Diels. 2023. "Mode-Locked Fiber Laser Sensors with Orthogonally Polarized Pulses Circulating in the Cavity" Sensors 23, no. 5: 2531. https://doi.org/10.3390/s23052531
APA StyleAfkhamiardakani, H., & Diels, J.-C. (2023). Mode-Locked Fiber Laser Sensors with Orthogonally Polarized Pulses Circulating in the Cavity. Sensors, 23(5), 2531. https://doi.org/10.3390/s23052531