A Survey of Symbiotic Radio: Methodologies, Applications, and Future Directions
Abstract
:1. Introduction
2. Organization of Paper
3. History before Symbiotic Radio
3.1. Rule Based Spectrum Sharing
3.2. Technology Based Spectrum Sharing
4. Basics of Symbiotic Radio Paradigm
4.1. Classification of Radio Systems
4.2. Radio Symbiosis
- Mutualism relationship: In this type of relationship, both systems work together to improve the overall performance of the network, resulting in a positive impact on both systems.
- Commensal relationship: In this type of relationship, one system maximizes its data rate without considering the performance of the other.
- Parasitic relationship: In this type of relationship, one system transmits at the same rate as the other to achieve maximum data rate, but at the expense of the transmission rate of the other system.
- Competition relationship: In this type of relationship, both systems try to gain the maximum transmission rate by competing for resources, which can lead to a reduction in performance for both systems.
5. State-of-the-Art Methodologies in Symbiotic Radio
5.1. Symbiotic Communication
5.2. Resource Allocation and Multiple Access
5.3. MIMO and Beamforming
5.4. Reconfigurable Intelligent Surface Assistance
5.5. Full-Duplex Techniques
5.6. Active-Load Assistance
6. Applications for 6G and Beyond
6.1. Healthcare and Living
6.2. Agriculture
6.3. Transportation
6.4. Manufacturing
6.5. Logistic and Supply Chain
7. Open Problems and Future Directions
7.1. Channel Modelling and Estimation
7.2. Synchronization Challenges
7.3. Downlink/Uplink Feedback
7.4. Interference Management
7.5. Multi-Antenna Design Problems
7.6. Network Design and Management Issues
7.7. Security and Privacy Concerns
7.8. Defining Key Performance Metrics
7.9. Symbiotic Communication and Sensing
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | third generation partnership project |
6G | sixth-generation |
AmBackCom | ambient backscatter communication |
AT | active transmitter |
AU | active user |
BackCom | backscatter communication |
BD | backscatter device |
BER | bit error rate |
CDRL | centralized deep reinforcement learning |
CR | cognitive radio |
CSI | channel-state-information |
DDRL | distributed deep reinforcement learning |
DSA | dynamic spectrum access |
FCC | Federal Communication Commission |
IoT | Internet-of-Things |
ISM | Industrial Scientific and Medical |
ITS | intelligent transportation system |
LIS | large-intelligent surface |
LTE | long-term-evolution |
MIMO | multiple-input multiple-output |
mmWave | millimeter wave |
NOMA | non-orthogonal multiple access |
RADAR | radio detection and ranging |
RF | radio frequency |
RFID | radio frequency identification |
RIS | reconfigurable intelligent surfaces |
SCaS | symbiotic communication and sensing |
SCm | symbiotic communication |
SINR | signal-to-interference-plus-noise-ratio |
SNR | signal-to-noise-ratio |
SRad | symbiotic radio |
SSA | static spectrum access |
THz | terahertz |
TV | television |
TVWS | TV white space |
UAV | unmanned aerial vehicle |
UGV | unmanned ground vehicles |
V2X | vehicle-to-everything |
WiFi | wireless fidelity |
References
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Markit, I. The Internet of Things: A movement, not a market. IHS Mark. 2022, 1, 1. [Google Scholar]
- 3rd Generation Partnership Project (3GPP). Study on Passive Internet of Things (Passive IoT) for 5G Advanced In Work Item Description, S2-2107084. 2021. Available online: https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_147E_Electronic_2021-10/INBOX/DRAFTS/S2-2107084-PIoT%C2%A0SID-final_Eric-CQ.docx (accessed on 29 January 2023).
- Boyer, C.; Roy, S. Invited paper—Backscatter communication and RFID: Coding, energy, and MIMO analysis. IEEE Trans. Commun. 2013, 62, 770–785. [Google Scholar] [CrossRef]
- Véronneau, S.; Roy, J. RFID benefits, costs, and possibilities: The economical analysis of RFID deployment in a cruise corporation global service supply chain. Int. J. Prod. Econ. 2009, 122, 692–702. [Google Scholar] [CrossRef]
- Van Huynh, N.; Hoang, D.T.; Lu, X.; Niyato, D.; Wang, P.; Kim, D.I. Ambient backscatter communications: A contemporary survey. IEEE Commun. Surv. Tutor. 2018, 20, 2889–2922. [Google Scholar] [CrossRef] [Green Version]
- Jin-Ping Niu, G.Y.L. An Overview on Backscatter Communications. J. Commun. Inf. Netw. 2019, 4, 1–14. [Google Scholar]
- Liu, V.; Parks, A.; Talla, V.; Gollakota, S.; Wetherall, D.; Smith, J.R. Ambient backscatter: Wireless communication out of thin air. Comput. Commun. Rev. 2013, 43, 39–50. [Google Scholar] [CrossRef]
- Wang, G.; Gao, F.; Fan, R.; Tellambura, C. Ambient backscatter communication systems: Detection and performance analysis. IEEE Trans. Commun. 2016, 64, 4836–4846. [Google Scholar] [CrossRef]
- Vougioukas, G.; Bletsas, A. 24μ Watt 26 m range batteryless backscatter sensors with FM remodulation and selection diversity. In Proceedings of the International Conference on RFID Technology & Application (RFID-TA), Warsaw, Poland, 20–22 September 2017; pp. 237–242. [Google Scholar]
- Vougioukas, G.; Bletsas, A. Switching frequency techniques for universal ambient backscatter networking. IEEE J. Sel. Areas Commun. 2018, 37, 464–477. [Google Scholar] [CrossRef]
- Vougioukas, G.; Alevizos, P.N.; Bletsas, A. Coherent detector for pseudo-FSK backscatter under ambient constant envelope illumination. In Proceedings of the 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar]
- Peng, Y.; Shangguan, L.; Hu, Y.; Qian, Y.; Lin, X.; Chen, X.; Fang, D.; Jamieson, K. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 147–160. [Google Scholar]
- Yang, G.; Liang, Y.C. Backscatter communications over ambient OFDM signals: Transceiver design and performance analysis. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Yang, G.; Liang, Y.C.; Zhang, R.; Pei, Y. Modulation in the air: Backscatter communication over ambient OFDM carrier. IEEE Trans. Commun. 2017, 66, 1219–1233. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Ishibashi, K. Ambient OFDM pilot-aided delay-shift keying and its efficient detection for ultra low-power communications. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, ON, Canada, 11–14 November 2019; pp. 1–5. [Google Scholar]
- Hara, T.; Takahashi, R.; Ishibashi, K. Ambient OFDM Pilot-Aided Backscatter Communications: Concept and Design. IEEE Access 2021, 9, 89210–89221. [Google Scholar] [CrossRef]
- Parks, A.N.; Liu, A.; Gollakota, S.; Smith, J.R. Turbocharging ambient backscatter communication. In Proceedings of the ACM SIGCOMM Computer Communication Review, New York, NY, USA, October 2014; pp. 619–630. [Google Scholar]
- Guo, H.; Zhang, Q.; Xiao, S.; Liang, Y.C. Exploiting multiple antennas for cognitive ambient backscatter communication. IEEE Internet Things J. 2018, 6, 765–775. [Google Scholar] [CrossRef]
- Duan, R.; Jantti, R.; ElMossallamy, M.; Han, Z.; Pan, M. Multi-antenna receiver for ambient backscatter communication systems. In Proceedings of the 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar]
- De Bary, A. The Phenomenon of Symbiosis; Karl J. Trubner: Strasbourg, Germany, 1879. [Google Scholar]
- Liang, Y.C.; Long, R.; Zhang, Q.; Niyato, D. Symbiotic communications: Where Marconi meets Darwin. IEEE Wirel. Commun. 2022, 29, 144–150. [Google Scholar] [CrossRef]
- Long, R.; Liang, Y.C.; Guo, H.; Yang, G.; Zhang, R. Symbiotic Radio: A new communication paradigm for passive Internet of things. IEEE Internet Things J. 2020, 7, 1350–1363. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M. The Myth of Spectrum Scarcity; Technical Report March; DYNA LLC: Solana Beach, CA, USA, 2010. [Google Scholar]
- Bhattarai, S.; Park, J.M.; Gao, B.; Bian, K.; Lehr, W. An overview of dynamic spectrum sharing: Ongoing initiatives, challenges, and a roadmap for future research. IEEE Trans. Cogn. Commun. Netw. 2016, 2, 110–128. [Google Scholar] [CrossRef]
- Voicu, A.M.; Simić, L.; Petrova, M. Survey of spectrum sharing for inter-technology coexistence. IEEE Commun. Surv. Tutorials 2019, 21, 1112–1144. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Sadler, B.M. A survey of dynamic spectrum access. IEEE Signal Process. Mag. 2007, 24, 79–89. [Google Scholar] [CrossRef]
- Papadias, C.B.; Ratnarajah, T.; Slock, D.T. Spectrum Sharing: The Next Frontier in Wireless Networks; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Han, C.; Wu, Y.; Chen, Z.; Wang, X. Terahertz communications (TeraCom): Challenges and impact on 6G wireless systems. arXiv 2019, arXiv:1912.06040. [Google Scholar]
- Rosston, G.L. Increasing the efficiency of spectrum allocation. Rev. Ind. Organ. 2014, 45, 221–243. [Google Scholar] [CrossRef]
- Mamadou Mamadou, A.; Toussaint, J.; Chalhoub, G. Survey on wireless networks coexistence: Resource sharing in the 5G era. Mob. Netw. Appl. 2020, 25, 1749–1764. [Google Scholar] [CrossRef]
- Gupta, M.S.; Kumar, K. Progression on spectrum sensing for cognitive radio networks: A survey, classification, challenges and future research issues. J. Netw. Comput. Appl. 2019, 143, 47–76. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, M.; Wu, G.; Alam, M.; Liang, Y.C.; Li, S. A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wirel. Commun. 2017, 24, 44–51. [Google Scholar] [CrossRef]
- Tarek, D.; Benslimane, A.; Darwish, M.; Kotb, A.M. Survey on spectrum sharing/allocation for cognitive radio networks Internet of Things. Egypt. Inform. J. 2020, 21, 231–239. [Google Scholar] [CrossRef]
- Mousa, S.H.; Ismail, M.; Nordin, R.; Abdullah, N.F. Effective wide spectrum sharing techniques relying on CR technology toward 5G: A survey. J. Commun. 2020, 15, 122–147. [Google Scholar] [CrossRef]
- Hu, F.; Chen, B.; Zhu, K. Full Spectrum Sharing in Cognitive Radio Networks Toward 5G: A Survey. IEEE Access 2018, 6, 15754–15776. [Google Scholar] [CrossRef]
- Amjad, M.; Akhtar, F.; Rehmani, M.H.; Reisslein, M.; Umer, T. Full-duplex communication in cognitive radio networks: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2158–2191. [Google Scholar] [CrossRef]
- Maloku, H.; Fazliu, Z.L.; Ibrani, M. A survey on coexistence in heterogeneous wireless networks in TV white spaces. Wirel. Commun. Mob. Comput. 2018, 2018, 7256835. [Google Scholar] [CrossRef]
- Alejandrino, J.D.; Concepcion, R.S.; Laugico, S.C.; Trinidad, E.T.; Dadios, E.P. Feasibility of Television White Space Spectrum Technologies for Wide Range Wireless Sensor Network: A survey. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q.; Chen, L.; Xu, W. Survey on coexistence of heterogeneous wireless networks in 2.4 GHz and TV white spaces. Int. J. Distrib. Sens. Netw. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Dong, T.; Gu, R.; Guo, Q.; Yin, J.; Liu, Z.; Zhang, T.; Ji, Y. A Review of Dynamic Resource Allocation in Integrated Satellite and Terrestrial Networks. In Proceedings of the International Conference on Networking and Network Applications (NaNA), Xi’an, China, 12–15 October 2018; pp. 127–132. [Google Scholar] [CrossRef]
- Wang, X.; Mao, S.; Gong, M.X. A survey of LTE Wi-Fi coexistence in unlicensed bands. Getmobile Mob. Comput. Commun. 2017, 20, 17–23. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Y.C.; Xiao, M. Spectrum sharing for Internet of things: A survey. IEEE Wirel. Commun. 2019, 26, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Labib, M.; Marojevic, V.; Martone, A.F.; Reed, J.H.; Zaghloul, A.I. Coexistence between communications and radar systems—A survey. Ursi Radio Sci. Bull. 2017, 2, 74–82. [Google Scholar] [CrossRef]
- Amjad, M.; Rehmani, M.H.; Member, S. Wireless multimedia cognitive radio networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 1056–1103. [Google Scholar] [CrossRef]
- Mazahir, S.; Ahmed, S.; Alouini, M.S. A survey on joint communication-radar systems. Front. Commun. Networks 2021, 1, 9. [Google Scholar] [CrossRef]
- Choi, J.; Marojevic, V.; Dietrich, C.B.; Reed, J.H.; Ahn, S. Survey of spectrum regulation for intelligent transportation systems. IEEE Access 2020, 8, 140145–140160. [Google Scholar] [CrossRef]
- Liang, Y.C.; Zhang, Q.; Larsson, E.G.; Li, G.Y. Symbiotic radio: Cognitive backscattering communications for future wireless networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1242–1255. [Google Scholar] [CrossRef]
- Han, Y.; Ekici, E.; Kremo, H.; Altintas, O. Spectrum sharing methods for the coexistence of multiple RF systems: A survey. Ad Hoc Netw. 2016, 53, 53–78. [Google Scholar] [CrossRef]
- Chawla, V.; Ha, D.S. An overview of passive RFID. IEEE Commun. Mag. 2007, 45, 11–17. [Google Scholar] [CrossRef]
- Stockman, H. Communication by means of reflected power. Proc. IRE 1948, 36, 1196–1204. [Google Scholar] [CrossRef]
- Koelle, A.R.; Depp, S.W.; Freyman, R.W. Short-range radio-telemetry for electronic identification, using modulated RF backscatter. Proc. IEEE 1975, 63, 1260–1261. [Google Scholar] [CrossRef]
- Landt, J. The history of RFID. IEEE Potentials 2005, 24, 8–11. [Google Scholar] [CrossRef]
- Rai, P.K.; Kumar, A.; Khan, M.Z.A.; Cenkeramaddi, L.R. LTE-based passive radars and applications: A review. Int. J. Remote Sens. 2021, 42, 7489–7518. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Y.C.; Niyato, D. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun. 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Zhao, J.; Gong, W.; Liu, J. Reliable and practical Bluetooth backscatter With commodity devices. IEEE/ACM Trans. Netw. 2021, 29, 1717–1729. [Google Scholar] [CrossRef]
- Li, Y.; Yan, S.; Gong, J.; Zeng, F. SNR enhancement of back scattering signals for bistatic radar based on BeiDou GEO satellites. Remote Sens. 2021, 13, 1254. [Google Scholar] [CrossRef]
- Kuschel, H.; Cristallini, D.; Olsen, K.E. Tutorial: Passive radar tutorial. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 2–19. [Google Scholar] [CrossRef]
- Martin, B.D.S.E. Symbiosis: “Living Together” in Chaos. Stud. Hist. Biol. 2012, 4, 7–25. [Google Scholar]
- Montesinos Seguí, E. Plant-associated microorganisms: A view from the scope of microbiology. Int. Microbiol. 2003, 4, 221–223. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Han, K.; Jiang, J.; Wei, Z.; Zhu, G.; Feng, Z.; Lu, J.; Meng, C. Symbiotic Sensing and Communications Towards 6G: Vision, Applications, and Technology Trends. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021. [Google Scholar]
- Mishra, A.K.; Inggs, M. FOPEN capabilities of commensal radars based on whitespace communication systems. In Proceedings of the International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 6–7 January 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Mishra, A.K.; Inggs, M. White space symbiotic radar: A new scheme for coexistence of radio communications and radar. In Proceedings of the IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 56–60. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Y.C.; Yang, H.C.; Poor, H.V. Mutualistic mechanism in symbiotic radios. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Yang, G.; Zhang, Q.; Liang, Y.C. Cooperative ambient backscatter communications for green Internet-of-Things. IEEE Internet Things J. 2018, 5, 1116–1130. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Liang, Y.C.; Long, R.; Zhang, Q. Cooperative Ambient Backscatter System: A Symbiotic Radio Paradigm for Passive IoT. IEEE Wirel. Commun. Lett. 2019, 8, 1191–1194. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Y.C.; Long, R.; Xiao, S.; Zhang, Q. Resource allocation for symbiotic radio system with fading channels. IEEE Access 2019, 7, 34333–34347. [Google Scholar] [CrossRef]
- Asiedu, D.K.P.; Yun, J.H. Power resource optimization for backscatter-aided symbiotic full-duplex secondary transmission with hardware impairments in a cognitive radio framework. Sensors 2022, 22, 375. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Hao, W.; Xiao, P.; Khalily, M.; Tafazolli, R. Resource allocations for symbiotic radio with finite blocklength backscatter link. IEEE Internet Things J. 2020, 7, 8192–8207. [Google Scholar] [CrossRef] [Green Version]
- Yeganeh, R.S.; Omidi, M.J. Energy consumption in multi-BD symbiotic radio system assisted 6G Network: A QoS constraint approach. TechRxiv 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, P.; Du, Q. Symbiotic communication: Concurrent transmission for multi-users based on backscatter communication. In Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020; pp. 835–839. [Google Scholar] [CrossRef]
- Han, S.; Liang, Y.C.; Sun, G. The design and optimization of random code assisted Multi-BD symbiotic radio system. IEEE Trans. Wirel. Commun. 2021, 1276, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, H.V.; Shen, K.; Liu, A.; Zhao, M.J. Stochastic transceiver optimization in multi-tags symbiotic radio systems. IEEE Internet Things J. 2020, 7, 9144–9157. [Google Scholar] [CrossRef]
- Yang, H.; Ye, Y.; Liang, K.; Chu, X. Energy efficiency maximization for symbiotic radio networks with multiple backscatter devices. IEEE Open J. Commun. Soc. 2021, 2, 1431–1444. [Google Scholar] [CrossRef]
- Xu, J.; Dai, Z.; Zeng, Y. Enabling full mutualism for symbiotic radio with massive backscatter devices. arXiv 2021, arXiv:2106.05789. [Google Scholar]
- Zhang, Q.; Zhang, L.; Liang, Y.C.; Kam, P.Y. Backscatter-NOMA: A symbiotic system of cellular and Internet-of-things networks. IEEE Access 2019, 7, 20000–20013. [Google Scholar] [CrossRef]
- Liao, Y.; Yang, G.; Liang, Y.C. Resource allocation in NOMA-enhanced full-duplex symbiotic radio networks. IEEE Access 2020, 8, 22709–22720. [Google Scholar] [CrossRef]
- Raza, A.; Nawaz, S.J.; Ahmed, A.; Wyne, S.; Muhammad, B.; Patwary, M.N.; Prasad, R. A NOMA-enabled cellular symbiotic radio for mMTC. Wirel. Pers. Commun. 2022, 122, 3545–3571. [Google Scholar] [CrossRef]
- Tuo, Y.; Zhang, C. Outage analysis of parasitic ambient backscatter communication in decode-and-forward relay networks with SWIPT. Sensors 2020, 20, 1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutty, S.; Sen, D. Beamforming for millimeter wave communications: An inclusive survey. IEEE Commun. Surv. Tutor. 2015, 18, 949–973. [Google Scholar] [CrossRef]
- Wu, T.; Jiang, M.; Zhang, Q.; Li, Q.; Qin, J. Beamforming design in multiple-input-multiple-output symbiotic radio backscatter Systems. IEEE Commun. Lett. 2021, 25, 1949–1953. [Google Scholar] [CrossRef]
- Dai, Z.; Li, R.; Xu, J.; Zeng, Y.; Jin, S. Cell-free symbiotic radio: Channel estimation method and achievable rate analysis. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC Workshops), Xiamen, China, 28–30 July 2021; pp. 25–30. [Google Scholar] [CrossRef]
- Xu, J.; Dai, Z.; Zeng, Y. MIMO symbiotic radio with massive passive devices: Asymptotic analysis and precoding Optimization. arXiv 2022, arXiv:2206.13203. [Google Scholar]
- Janjua, M.B.; Abbas, H.T.; Qaraqe, K.A.; Arslan, H. Beam Selection for Ambient Backscatter Communication in Beamspace mmWave Symbiotic Radio. IEEE Wirel. Commun. Lett. 2023. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, M.; Zhang, Q.; Qin, J. Secure beamforming in MISO NOMA backscatter device aided symbiotic radio networks. arXiv 2019, arXiv:1906.03410. [Google Scholar]
- Zheng, S.; Lv, B.; Zhang, T.; Xu, Y.; Chen, G.; Wang, R.; Ching, P. On DoF of Active RIS-Assisted MIMO Interference Channel with Arbitrary Antenna Configurations: When Will RIS Help? arXiv 2022, arXiv:2211.11951. [Google Scholar]
- Dai, L.; Renzo, M.D.; Chae, C.B.; Hanzo, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Chen, H.; Yang, G.; Liang, Y.C. Joint active and passive beamforming for reconfigurable intelligent surface enhanced symbiotic radio system. IEEE Wirel. Commun. Lett. 2021, 10, 1056–1060. [Google Scholar] [CrossRef]
- Zhou, H.; Liang, Y.C.; Kang, X.; Sun, S. Cooperative Beamforming for Large Intelligent Surface Assisted Symbiotic Radios. In Proceedings of the IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Y.C.; Poor, H.V. Symbiotic radio: A new application of large intelligent surface/antennas (LISA). In Proceedings of the Wireless Communications and Networking Conference (WCNC); IEEE: Seoul, Republic of Korea, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, X.; Liang, Y.C.; Yang, G.; Zhao, L. Reconfigurable intelligent surface empowered symbiotic radio over broadcasting signals. IEEE Trans. Commun. 2021, 6778, 1–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Y.C.; Vincent Poor, H. Reconfigurable intelligent surface assisted MIMO symbiotic radio networks. IEEE Trans. Commun. 2021, 69, 4832–4846. [Google Scholar] [CrossRef]
- Lei, X.; Wu, M.; Zhou, F.; Tang, X.; Hu, R.Q.; Fan, P. Reconfigurable intelligent surface-based symbiotic radio for 6G: Design, challenges, and opportunities. IEEE Wirel. Commun. 2021, 28, 5. [Google Scholar] [CrossRef]
- Long, R.; Guo, H.; Zhang, L.; Liang, Y.C. Full-Duplex Backscatter Communications in Symbiotic Radio Systems. IEEE Access 2019, 7, 21597–21608. [Google Scholar] [CrossRef]
- Long, R.; Liang, Y.C.; Pei, Y.; Larsson, E.G. Active-Load Assisted Symbiotic Radio System in Cognitive Radio Network. In Proceedings of the IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Bousquet, J.F.; Magierowski, S.; Messier, G.G. A 4-GHz active scatterer in 130-nm CMOS for phase sweep amplify-and-forward. IEEE Trans. Circuits Syst. Regul. Pap. 2011, 59, 529–540. [Google Scholar] [CrossRef]
- Khaledian, S.; Farzami, F.; Soury, H.; Smida, B.; Erricolo, D. Active two-way backscatter modulation: An analytical study. IEEE Trans. Wirel. Commun. 2019, 18, 1874–1886. [Google Scholar] [CrossRef]
- Li, D. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering. IEEE Trans. Commun. 2020, 68, 1405–1416. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Y.C.; Poor, H.V. Intelligent user association for symbiotic radio networks using deep reinforcement learning. IEEE Trans. Wirel. Commun. 2020, 19, 4535–4548. [Google Scholar] [CrossRef] [Green Version]
- Janjua, M.B.; Duranay, A.E.; Arslan, H. Role of wireless communication in healthcare system to cater disaster situations under 6G vision. Front. Commun. Networks 2020, 1, 610879. [Google Scholar] [CrossRef]
- Jameel, F.; Duan, R.; Chang, Z.; Liljemark, A.; Ristaniemi, T.; Jantti, R. Applications of backscatter communications for healthcare networks. IEEE Netw. 2019, 33, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Hu, F.; Ling, Z.; Li, S. Bidirectional intra-network mutual ambient backscatter communications in distributed wireless wearable measurement networks. Measurement 2021, 183, 109863. [Google Scholar] [CrossRef]
- Kotaru, M.; Zhang, P.; Katti, S. Localizing low-power backscatter tags using commodity WiFi. In Proceedings of the 13th International Conference on Emerging Networking Experiments and Technologies, Incheon, Republic of Korea, 12–15 December 2017; pp. 251–262. [Google Scholar]
- Tokekar, P.; Vander Hook, J.; Mulla, D.; Isler, V. Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Robot. 2016, 32, 1498–1511. [Google Scholar] [CrossRef]
- Pereira, F.; Sampaio, H.; Chaves, R.; Correia, R.; Luís, M.; Sargento, S.; Jordão, M.; Almeida, L.; Senna, C.; Oliveira, A.S.; et al. When backscatter communication meets vehicular networks: Boosting crosswalk awareness. IEEE Access 2020, 8, 34507–34521. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, Y.; Zhao, W.; Jia, M.; Liu, Q.; He, R.; Ai, B. A green paradigm for Internet of things: Ambient backscatter communications. China Commun. 2019, 16, 109–119. [Google Scholar] [CrossRef]
- Angeles, R. RFID technologies: Supply-chain applications and implementation issues. Inf. Syst. Manag. 2005, 22, 51–65. [Google Scholar] [CrossRef]
- Ma, S.; Wang, G.; Fan, R.; Tellambura, C. Blind channel estimation for ambient backscatter communication systems. IEEE Commun. Lett. 2018, 22, 1296–1299. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, H.; Zhao, L.; Chen, X.; Zhou, A. Deep learning for joint pilot design and channel estimation in symbiotic radio communications. IEEE Wirel. Commun. Lett. 2022, 11, 2056–2060. [Google Scholar] [CrossRef]
- Yang, G.; Wei, T.; Liang, Y.C. Joint hybrid and passive beamforming for millimeter wave symbiotic radio systems. IEEE Wirel. Commun. Lett. 2021, 10, 2294–2298. [Google Scholar] [CrossRef]
- Furqan, H.M.; Solaija, M.S.J.; Türkmen, H.; Arslan, H. Wireless Communication, Sensing, and REM: A Security Perspective. IEEE Open J. Commun. Soc. 2021, 2, 287–321. [Google Scholar] [CrossRef]
- Solaija, M.S.J.; Salman, H.; Arslan, H. Towards a unified framework for physical layer security in 5G and beyond networks. IEEE Open J. Veh. Technol. 2022, 3, 321–343. [Google Scholar] [CrossRef]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 21, 1773–1828. [Google Scholar] [CrossRef]
- Han, Y.; Li, N.; Liu, Y.; Zhang, T.; Tao, X. Artificial noise aided secure NOMA communications in STAR-RIS networks. IEEE Wirel. Commun. Lett. 2022, 11, 1191–1195. [Google Scholar] [CrossRef]
- Cnaan-On, I.; Thomas, S.J.; Reynolds, M.S.; Krolik, J.L. Multichannel radar backscatter communication and localization. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 76–80. [Google Scholar] [CrossRef]
- Cnaan-On, I.; Thomas, S.J.; Krolik, J.L.; Reynolds, M.S. Multichannel backscatter communication and ranging for distributed sensing with an FMCW radar. IEEE Trans. Microw. Theory Tech. 2015, 63, 2375–2383. [Google Scholar] [CrossRef]
Reference | Design Objective | System | Symbiotic Relationships | |||
---|---|---|---|---|---|---|
Mutualistic | Commensal | Parasitic | Competitive | |||
[23] | Rate maximization of BD and power minimization at active transmitter | Single BD | 🗸 | – | – | – |
[48] | Rate maximization of passive and active radio system | Single BD | 🗸 | – | – | – |
[66] | Rate maximization of passive and active radio system | Single BD | – | 🗸 | 🗸 | 🗸 |
[67] | Resource allocation under fading channels | Single BD | – | 🗸 | 🗸 | – |
[68] | Power optimization of CR based active radio system under hardware impairments | Single BD | 🗸 | 🗸 | – | – |
[69] | Resource allocation with cooperative and non-cooperative active radio system | Single BD | – | 🗸 | 🗸 | – |
[70] | Optimal resource allocation by scheduling BD in time | Multi-BD | – | 🗸 | – | – |
[71] | Random access with orthogonal interference | Multi-BD | – | 🗸 | – | – |
[72] | Power optimization in random code based multiple access | Multi-BD | – | – | 🗸 | – |
[73] | Stochastic transceiver design for performance improvement under downlink and inter-BD interference | Multi-BD | – | – | 🗸 | – |
[74] | Resource allocation to maximize energy efficiency of active radio system | Multi-BD | 🗸 | – | – | – |
[75] | Sum rate maximization of active users with massive number of BD | Multi-BD | – | 🗸 | 🗸 | – |
[76] | Outage probability and ergodic rate analysis of backscatter NOMA | Single BD | – | 🗸 | – | – |
[77] | Throughput maximization of BD in NOMA-DTDMA system | Multi-BD | – | – | 🗸 | – |
[78] | Outage analysis under signal interference of cellular-NOMA AU and BD | Multi-BD | – | 🗸 | – | – |
[79] | Performance analysis of decode and forward relay network | Multi-BD | – | – | 🗸 | – |
[81] | BD transmission rate optimization | Multi-BD | – | – | 🗸 | – |
[83] | AU link enhancement with massive BD deployment and MIMO receiver | Multi-BD | 🗸 | – | – | – |
[85] | Secure beamforming and secrecy rate analysis of BD | Single BD | – | 🗸 | – | – |
[84] | Signal accessibility to BD in millimeter wave beamspace channel through beam selection | Multi-BD | – | 🗸 | – | – |
[88] | Joint transmit beamforming for power minimization of active radio system | Multi-BD | 🗸 | – | – | – |
[89] | Transmit power minimization of active radio system | Single BD | – | 🗸 | – | – |
[90] | Beamforming for BD rate enhancement | Multi-BD | 🗸 | – | – | – |
[91] | Transmit power minimization of active radio system | Single BD | 🗸 | – | – | – |
[92] | BD transmission rate enhancement and AT transmit power minimization | Single BD | 🗸 | – | – | – |
[95] | BD transmission rate maximization with active load and interference reduction at AU with beamforming | Single BD | – | – | 🗸 | – |
[99] | Optimal BD association to active users using deep learning methods | Multi-BD | – | – | 🗸 | – |
[94] | Transmit power optimization of active radio system with full-duplex BD | Multi-BD | – | – | 🗸 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janjua, M.B.; Arslan, H. A Survey of Symbiotic Radio: Methodologies, Applications, and Future Directions. Sensors 2023, 23, 2511. https://doi.org/10.3390/s23052511
Janjua MB, Arslan H. A Survey of Symbiotic Radio: Methodologies, Applications, and Future Directions. Sensors. 2023; 23(5):2511. https://doi.org/10.3390/s23052511
Chicago/Turabian StyleJanjua, Muhammad Bilal, and Hüseyin Arslan. 2023. "A Survey of Symbiotic Radio: Methodologies, Applications, and Future Directions" Sensors 23, no. 5: 2511. https://doi.org/10.3390/s23052511